Hình thang ABCD (AB//CD). Các tia phân giác của góc C,D giao nhau tại I thuộc AB. CM : AB= AD+BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 tia phân giác giao nhau tại E
Chứng minh A;E;B thẳng hàng
Gọi DI là phân giác của góc ADC(I thuộc AB)
Xét ΔADI có góc ADI=góc AID(=góc CDI)
nên ΔADI cân tại A
=>AD=AI
=>BI=BC
=>ΔBIC cân tại B
=>góc BIC=góc BCI=góc DCI
=>CI là phân giác của góc DCB(ĐPCM)
Gọi DI là phân giác của góc ADC(I thuộc AB)
Xét ΔADI có góc ADI=góc AID(=góc CDI)
nên ΔADI cân tại A
=>AD=AI
=>BI=BC
=>ΔBIC cân tại B
=>góc BIC=góc BCI=góc DCI
=>CI là phân giác của góc DCB(ĐPCM)
A B C D I K
Gọi K là điểm thuộc AD sao cho IK // AB // CD
Ta có : IK // AB => Góc BAI = góc IAK = góc AIK
=> Tam giác KAI cân tại K => AK = KI
Tương tự, ta cũng có tam giác DKI cân tại K => IK = AD
=> K là trung điểm AD => IK là đường trung bình của hình thang ABCD
Do đó : AD = 2KI = \(2.\frac{AB+CD}{2}=AB+CD\)
Xét ΔDAI có góc DAI=góc DIA
nên ΔDAI cân tạiD
=>DA=DI
Xét ΔCBI có góc CBI=góc CIB
nên ΔCBI cân tại C
=>CB=CI
=>DI+CI=DA+CB=CD
Ta có AB // CD => Góc IDC=Góc DIA ( so le trong )
Mà góc IDC=góc IDA ( do ID là tia phân giác góc ADC)
=> Góc DIA= Góc IDA => tam giác DIA cân tại A
=> AD = AI (1)
Ta có AB // CD => Góc DCI = Góc CIB (so le trong )
Mà góc DCI = góc ICB ( do IC là tia phân giác góc DCB)
=> Góc CIB = Góc ICB => tam giác CIB cân tại B
=> BC = BI (2)
Cộng (1) và (2) , vế theo vế .Ta được:
AD + BC = AI + BI
=> AD + BC = AB (đpcm)
gọi K là giao điểm DE và AB
ta có góc AKE=ADK(cùng bằng với EDC)
suy ra tam giác AKD cân tại A
tam,giác ADK cân tại A có AE là đường cao phân giác
suy ra AE cũng là đường trung trực
vay ED=EK
xét tam giác BEK và CED
ED=EK
BEK=CED(đối đỉnh)
BKE=EDC(so le trong ABsong song CD)
vậy tam giác BEK=CED
suy ra CD=NK
vậy AB+BK=AB+CD=AK
mà AK=AD
nên AD=AB+CD