Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Xét ΔCBD có CD=CB
nên ΔCBD cân tại C
Suy ra: \(\widehat{CDB}=\widehat{CBD}\)
mà \(\widehat{CDB}=\widehat{ADB}\)
nên \(\widehat{ADB}=\widehat{DBC}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
hay ADCB là hình thang
Gọi DI là phân giác của góc ADC(I thuộc AB)
Xét ΔADI có góc ADI=góc AID(=góc CDI)
nên ΔADI cân tại A
=>AD=AI
=>BI=BC
=>ΔBIC cân tại B
=>góc BIC=góc BCI=góc DCI
=>CI là phân giác của góc DCB(ĐPCM)
Xét ΔDAI có góc DAI=góc DIA
nên ΔDAI cân tạiD
=>DA=DI
Xét ΔCBI có góc CBI=góc CIB
nên ΔCBI cân tại C
=>CB=CI
=>DI+CI=DA+CB=CD
Bài 2:
Gọi AI là phân giác của góc BAD
Xét ΔDAI có góc DAI=góc DIA
nên ΔDIA cân tại D
=>DA=DI
=>CB=CI
=>ΔCBI cân tại C
=>góc CBI=góc CIB
=>góc CBI=góc ABI
=>BI là phân giác của góc ABC(ĐPCM)
Gọi 2 tia phân giác giao nhau tại E
Chứng minh A;E;B thẳng hàng
Gọi DI là phân giác của góc ADC(I thuộc AB)
Xét ΔADI có góc ADI=góc AID(=góc CDI)
nên ΔADI cân tại A
=>AD=AI
=>BI=BC
=>ΔBIC cân tại B
=>góc BIC=góc BCI=góc DCI
=>CI là phân giác của góc DCB(ĐPCM)