K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

Ta có (a + b)2 - b2 = (a + b - b)(a + b + b) =a(a + 2b) (đpcm)

10 tháng 7 2021

\(VT=\left(a+b\right)^2-b^2=a^2+2ab+b^2-b^2=a^2+2ab\)

\(=a\left(a+2b\right)=VP\)( đpcm ) 

NV
14 tháng 3 2022

\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}=\dfrac{a^2b^2}{\left(a^2+b^2\right)+\left(a^2+a^2b^2\right)+2a^2b^2}\le\dfrac{a^2b^2}{2ab+2a^2b+2a^2b^2}=\dfrac{ab}{2\left(1+a+ab\right)}\)

Tương tự và cộng lại;

\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{bc}{1+b+bc}+\dfrac{ca}{1+c+ca}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{abc}{a+ab+abc}+\dfrac{ab.ca}{ab+abc+ab.ca}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{1}{a+ab+1}+\dfrac{a}{ab+1+a}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

18 tháng 1 2021

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Dấu ''='' xảy ra <=> a = b = c = 1 

14 tháng 1 2022

\(\left(a-b\right)^3-\left(a+b\right)^3=-2b\left(3a^2+b^2\right)\)

VT : \(\left(a-b\right)^3-\left(a+b\right)^3=a^3-3a^2b+3ab^2-b^3-\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(=a^3-3a^2b+3ab^2-b^3-a^3-3a^2b-3ab^2-b^3\)

\(=-6a^2b-2b^3=-2b\left(3a^2+b^2\right)=VP\)

vậy : \(\left(a-b\right)^3-\left(a+b\right)^3=-2b\left(3a^2+b^2\right)\)(đpcm)

1) a³ + b³ + c³ - 3abc

=(a + b)(a² - ab + b²) + c³ - 3abc

=(a + b)(a² - ab + b²) + c(a² - ab + b²) - 2abc - ca² - cb²

=(a + b + c)(a² - ab + b²) - (abc + b²c + bc² + ac² + abc + c²a) + c³ + ac² + bc²

=(a + b = c)(a² - ab + b²) - (a + b + c)(bc + ca) + c²(a + b + c)

=(a + b + c)(a² + b² + c² - ab - bc - ca)

20 tháng 8 2021

2) \(\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)=\left(3a+5\right)\left(a-3\right)+2\left(7b-10\right)\left(1\right)\)

\(\Leftrightarrow3a^2+15a+2ab+10b-a-5-2ab+4b=3a^2+14a+15+14b-10\)

\(\Leftrightarrow3a^2+14a+14b-5=3a^2+14a+14b-5\)( đúng)

\(\Rightarrow\left(1\right)\) đúng (đpcm)

5 tháng 7 2017

(a-b)= (a-b).(a-b)

         = a2 - ab - ab + b2

         = a2 - 2ab + b2 (đpcm)

5 tháng 10 2021
Ko phải bạn ạ
AH
Akai Haruma
Giáo viên
9 tháng 7 2023

Lời giải:

Đặt $a-b=x; b-c=y; c-a=z$ thì $x+y+z=0$

Khi đó. Điều kiện đề tương đương với:

$x^2+y^2+z^2=(x-y)^2+(y-z)^2+(z-x)^2$

$\Leftrightarrow x^2+y^2+z^2=x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2$
$\Leftrightarrow x^2+y^2+z^2=2(x^2+y^2+z^2)-2(xy+yz+xz)$

$\Leftrightarrow 2(xy+yz+xz)=x^2+y^2+z^2$

$\Leftrightarrow 2(x^2+y^2+z^2)=x^2+y^2+z^2+2(xy+yz+xz)=(x+y+z)^2=0$

$\Rightarrow x=y=z=0$

$\Rightarrow a-b=b-c=c-a=0$
$\Rightarrow a=b=c$