Qua điểm O vẽ 5 đường thẳng phân biệt.
Xét các góc không có điểm trong chung. Chứng minh tồn tại một góc lớn hơn hoặc bằng 360 và tồn tại một góc nhỏ hơn hoặc bằng 360 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 đường thẳng cắt nhau sẽ tạo thành 20 góc không có điểm chung
⇒Tổng của 20 góc này sẽ là 360o360o
Xét: cả 20 góc đều nhỏ hơn 18o18o
⇒Tổng 20 góc nhỏ hơn 360o360o (vô lý)
⇒Phải ít nhất phải tồn tại một góc lớn hơn hoặc bằng 18o18o
và ít nhất cũng phải tồn tại một góc nhỏ hơn hoặc bằng 18o18o
mà hai góc trên đều có góc đối đỉnh
⇒ Phải tồn tại gai góc lớn hơn hoặc bằng 18o18o, nhỏ hơn howacj bằng 180o
có trên mạng mà anh
Qua O kẻ 10 đường thẳng // với 10 đường thẳng đã cho trước 10 đường thẳng qua O tạo thành 20 góc không có điểm chung
Trong đó mỗi góc này bằng góc giữa 2 đường thẳng trong số 10 đường thẳng đã cho.
Tổng số góc điểm O là 360 độ do đó có ít nhất 2 góc lớn hơn hoặc bằng 360/20=18 độ.
Vậy qua điểm O vẽ 10 đường thẳng đôi phân biệt thì tồn tại 2 góc lớn hơn hoặc bằng 18.
Nguồn : H7
hình tự vẽ :))
a, 5 đường thẳng đi qua điểm O tạo thành 5 . 2 = 10 (tia)
Cứ 1 tia kết hợp với 9 tia còn lại tạo thành 1 . 9 = 9 (góc)
Nên 10 tia kết hợp với 9 tia còn lại tạo thành 10 . 9 = 90 (góc)
Mà mỗi góc được tính 2 lần
Vậy số góc thực được tạo thành là: 90 : 2 = 45 (góc)
b, 5 đường thẳng tạo thành 5 góc bẹt
Số góc tạo thành không kể góc bẹt là: 45 - 5 = 40 (góc)
Số cặp góc đối đỉnh nhỏ hơn góc bẹt là: 40 : 2 = 20 (cặp)
c. Trong 40 góc nhỏ hơn 180o thì có 10 góc không có điểm trong chung.
Gọi 10 góc đó lần lượt là: \(\widehat{O_1}\); \(\widehat{O_2}\); .... ; \(\widehat{O_{10}}\)
Ta có: \(\widehat{O_1}+\widehat{O_2}+\widehat{O_3}+\widehat{O_4}+\widehat{O_5}=180^o\)
\(\widehat{O_6}+\widehat{O_7}+\widehat{O_8}+\widehat{O_9}+\widehat{O_{10}}=180^o\)
\(\widehat{O_1}+\widehat{O_2}+\widehat{O_3}+\widehat{O_4}+\widehat{O_5}+\widehat{O_6}+\widehat{O_7}+\widehat{O_8}+\widehat{O_9}+\widehat{O_{10}}=180^o+180^o=360^o\)
+) Giả sử: \(\widehat{O_1}=\widehat{O_2}=\widehat{O_3}=....=\widehat{O_{10}}=360^o:10=36^o\)
+) Giả sử 10 góc đều lớn hơn 36o :
\(\Rightarrow\widehat{O_1}+\widehat{O_2}+\widehat{O_3}+\widehat{O_4}+\widehat{O_5}+\widehat{O_6}+\widehat{O_7}+\widehat{O_8}+\widehat{O_9}+\widehat{O_{10}}>360^o\)(Vô lý)
+) Giả sử 10 góc đều nhỏ hơn 36o :
\(\Rightarrow\widehat{O_1}+\widehat{O_2}+\widehat{O_3}+\widehat{O_4}+\widehat{O_5}+\widehat{O_6}+\widehat{O_7}+\widehat{O_8}+\widehat{O_9}+\widehat{O_{10}}< 360^o\)(Vô lý)
Vậy tổng \(\widehat{O_1}+\widehat{O_2}+\widehat{O_3}+\widehat{O_4}+\widehat{O_5}+\widehat{O_6}+\widehat{O_7}+\widehat{O_8}+\widehat{O_9}+\widehat{O_{10}}=360^o\)thì các góc lớn bằng 36o hoặc có ít nhất 1 góc lớn hơn 36o
a,5 đường thẳng cắt nhau tại 1 điểm tạo thành 10 tia chung gốc
Mỗi tia tạo với 9 tia còn lại thành 9 góc mà có 10 tia như vậy tì số góc được tạo thành là :
9 . 10 = 90 ( góc )
Vì mỗi góc được lặp lại 2 lần nên có tất cả :
90 : 2 = 45 ( góc )
b, 5 đường thẳng cắt nhau tạo thành 5 góc bẹt . Vậy có tất cả :
45 - 5 = 40 góc khác góc bẹt
Có 40 góc khác góc bẹt mà mỗi góc có 1 góc đối đỉnh với nó nên có tất cả :
40 : 2 = 20 ( cặp góc đối đỉnh )
c, 5 đường thẳng cắt nhau tạo thành 10 góc không có điểm chung
\(\Rightarrow\) Tổng 10 góc này là 360 độ
\(\Rightarrow\) Tổng của 10 góc này nhỏ hơn 360 độ ( vô lý )
\(\Rightarrow\) Trong 10 góc này tồn tại ít nhất 1 góc lớn hơn 36 độ
\(\Rightarrow\) Tổng của 10 góc này lớn hơn 360 độ ( vô lý )
\(\Rightarrow\) Trong 10 góc này tồn tại ít nhất 1 góc nhỏ hơn hoặc = 36 độ
a) Năm đường thẳng cắt nhau tại 1 điểm tạo thành 10 tia chung gốc.
Mỗi tia tạo với 9 tia còn lại 9 góc mà có 10 tia như vậy nên có tất cả số góc là:
9 x 10 = 90 ( góc )
Vì mỗi góc được tính lặp lại 2 lần nên:
90 : 2 = 45 ( góc )
b) 5 đường thẳng cắt nhau tạo thành 5 góc bẹt. Vậy có tất cả số góc khác góc bẹt là:
45 - 5 = 40 ( góc khác góc bẹt )
Có tất cả 40 góc khác góc bẹt mà mỗi góc có 1 góc đối đỉnh với nó. Nên có tất cả :
40 : 2 = 20 ( cặp góc đối đỉnh )
c) Năm đường thẳng cắt nhau tạo thành 10 góc không có điểm trong chung.
=> Tổng của 10 góc này bằng 360o
Giả sử cả 10 góc đều bé hơn 36o
=> Tổng của 10 góc này < 360o ( điều này là vô lý )
=> Trong 10 góc này tồn tại ít nhất 1 góc nhỏ hơn 36o
GIẢI :
a) Năm đường thẳng cắt nhau tại 1 điểm tạo thành 10 tia chung gốc.
Mỗi tia tạo với 9 tia còn lại 9 góc mà có 10 tia như vậy nên có tất cả số góc là:
9 x 10 = 90 góc
Vì mỗi góc được tính lặp lại 2 lần nên có tất cả:
90 : 2 = 45 góc
b) 5 đường thẳng cắt nhau tạo thành 5 góc bẹt. Vậy có tất cả số góc khác góc bẹt là:
45 - 5 = 40 góc khác góc bẹt
Có tất cả 40 góc khác góc bẹt mà mỗi góc có 1 góc đối đỉnh với nó. Nên có tất cả:
40 : 2 = 20 cặp góc đối đỉnh
c) Năm đường thẳng cắt nhau tạo thành 10 góc không có điểm trong chung.
=> Tổng của 10 góc này bằng 360 độ.
Giả sử cả 10 góc đều < 36 độ.
=> Tổng của 10 góc này < 360 độ (Điều này là vô lý)
=> trong 10 góc này tồn tại ít nhất 1 góc nhỏ hơn 36 độ.
Toán lớp 7Hình học
Phạm Diệu Hằng 06/07/2015 lúc 14:29
GIẢI :
a) Năm đường thẳng cắt nhau tại 1 điểm tạo thành 10 tia chung gốc.
Mỗi tia tạo với 9 tia còn lại 9 góc mà có 10 tia như vậy nên có tất cả số góc là:
9 x 10 = 90 góc
Vì mỗi góc được tính lặp lại 2 lần nên có tất cả:
90 : 2 = 45 góc
b) 5 đường thẳng cắt nhau tạo thành 5 góc bẹt. Vậy có tất cả số góc khác góc bẹt là:
45 - 5 = 40 góc khác góc bẹt
Có tất cả 40 góc khác góc bẹt mà mỗi góc có 1 góc đối đỉnh với nó. Nên có tất cả:
40 : 2 = 20 cặp góc đối đỉnh
c) Năm đường thẳng cắt nhau tạo thành 10 góc không có điểm trong chung.
=> Tổng của 10 góc này bằng 360 độ.
Giả sử cả 10 góc đều < 36 độ.
=> Tổng của 10 góc này < 360 độ (Điều này là vô lý)
=> trong 10 góc này tồn tại ít nhất 1 góc nhỏ hơn 36 độ.
Trả lời đúng mik k cho nhé