Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình \(x^2-2mx+m^2+m-5=0\left(1\right)\)
Xét phương trình (1) có:
\(\Delta=4m^2-4\left(m^2+m-5\right)\)
= \(20-4m\)
Để phương trình (1) có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow20-4m>0\Leftrightarrow m< 5\)
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m^2+m-5\end{matrix}\right.\)
Theo đề bài ta có:
\(2\left(x_1^2+x_2^2\right)-3x_1x_2=29\)
\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-3x_1x_2=29\)
\(\Leftrightarrow2\left[4m^2-2\left(m^2+m-5\right)\right]-3\left(m^2+m-5\right)=29\)
\(\Leftrightarrow2\left(10-2m\right)-3\left(m^2+m-5\right)=29\)
\(\Leftrightarrow-3m^2-7m+6=0\)
\(\Leftrightarrow\left(3m-2\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3m-2=0\\m+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2}{3}\\m=-3\end{matrix}\right.\) (tmđk)
Vậy để phương trình \(x^2-2mx+m^2+m-5=0\) có 2 nghiệm phân biệt x1 và x2 thỏa mãn \(2\left(x_1^2+x_2^2\right)-3x_1x_2=29\) thì \(m=\dfrac{2}{3}\) hoặc \(m=-3\)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2+3x=4+3y\\2x+3y=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2+5x=16\\y=\dfrac{12-2x}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{12-2x}{3}\right)^2+5x=16\\y=\dfrac{12-2x}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left(12-2x\right)^2}{9}+5x=16\\y=\dfrac{12-2x}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}144-120x+25x^2=144-45x\\y=\dfrac{12-2x}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}25x^2-75x=0\\y=\dfrac{12-2x}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}25x\left(x-3\right)=0\\y=\dfrac{12-2x}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\\y=\dfrac{12-2x}{3}\end{matrix}\right.\)
Với x= 0, ta có: y=4
Với x=3, ta có: y= 2
KL: Nếu x=0 thì y=4
Nếu x=3 thì y=2
\(\dfrac{7}{9}\):\(\dfrac{28}{63}\)=\(\dfrac{7}{9}\):\(\dfrac{4}{9}\)=\(\dfrac{7}{4}\).
\(\left(\dfrac{9}{16}\right)^5\cdot x=\left(\dfrac{27}{64}\right)^3\)
\(\Leftrightarrow\left(\dfrac{3}{4}\right)^{10}\cdot x=\left(\dfrac{3}{4}\right)^9\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^9:\left(\dfrac{3}{4}\right)^{10}\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^{-1}\)
\(\Rightarrow x=\dfrac{4}{3}\)
Vậy x=4/3
(\(\dfrac{9}{16}\))5\(\times\) \(x\) = (\(\dfrac{27}{64}\))3
\(x\) = (\(\dfrac{27}{64}\))3 : (\(\dfrac{9}{16}\))5
\(x\) = (\(\dfrac{3^3}{2^6}\))3: (\(\dfrac{3^2}{2^4}\))5
\(x\) = \(\dfrac{3^9}{2^{18}}\) : \(\dfrac{3^{10}}{2^{20}}\)
\(x\) = \(\dfrac{3^9}{2^{18}}\) \(\times\) \(\dfrac{2^{20}}{3^{10}}\)
\(x\) = \(\dfrac{2^2}{3}\)
\(x\) = \(\dfrac{4}{3}\)
7/9 - 2/3x = -5/6
=> 2/3x = 7/9 - ( - 5/6 )
=> 2/3x = 19/18
=> x = 19/18 : 2/3
=> x = 19/12
1+ (-3) = -2
5+(-7) = -2
9+(-11) = -2
13+(-15) = -2
17+ (-19) = -2
=> tổng trên = -10
lần này mới đúng hồi nãy bấm máy tính sai. Kq này đúng 100%
a) 1 +(-3) +5 +(-7) +9 + (-11) +13 +(-15) +17 +(-19)
= -9
Trả lời :
a)\(-\frac{3}{5}+\frac{9}{16}+-\frac{2}{5}+\frac{7}{16}\)
=\(\left(-\frac{3}{5}+-\frac{2}{5}\right)+\left(\frac{9}{16}+\frac{7}{16}\right)\)
=\(-1+1\)
=\(1\)
b)\(5\frac{2}{3}-1\frac{1}{5}-2\frac{2}{3}\)
=\(\left(5-1-2\right)\left(\frac{2}{3}-\frac{1}{5}-\frac{2}{3}\right)\)
=\(-2\frac{1}{5}\)
Hok_Tốt
#Thiên_Hy
a ) -3/5 + 9/16 + (-2/5 ) + 7/16
[ -3/5 + (-2/5) ] + (9/16 + 7/16 )
-1 + 1
0
b) 5 2/3 - 1 1/5 - 2 2/3
(5 2/3 - 2 2/3) - 1 1/5
3 - 6/1
-3
1 I wear colorful clothes during Tet Holiday
2 I will say happy new year to my mother
3 She won't ask for lucky money
4 I won't sweep the floor
5 He won't take the things related to the house out of water
1. I wear colorful clothes during Tet Holiday.
2. I will to say happy new year.....đoạn này mk hơi bí.
3. She won't ask for lucky money.
4. I won't sweep the floor.
5. He won't take the things related to the house out of water.
Ta có: \(\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right)\div\frac{b}{a-\sqrt{a^2-b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}\cdot\frac{a-\sqrt{a^2-b^2}}{b}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)
\(=\frac{a-b}{\sqrt{a^2-b^2}}=\frac{a-b}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\sqrt{\frac{a-b}{a+b}}\)