Chứng minh
A = - 3x^2 - 6x - 9 < 0, \(\forall\)x
B = x^2 - 5x + 10 > 0, \(\forall\)x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(-x^2+6x-19\)
\(=-\left(x^2-6x+19\right)\)
\(=-\left(x^2-6x+9+10\right)\)
\(=-\left(x-3\right)^2-10< 0\forall x\)
a) \(x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)đúng \(\forall x\in R\)
b) \(x^2-4x+10=\left(x^2-4x+4\right)+6=\left(x-2\right)^2+6\ge6>0\)đúng \(\forall x\in R\)
c) \(x\left(x-4\right)+10=x^2-4x+10\)(giải như câu b)
d) \(x\left(2-x\right)-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3< 0\)đúng \(\forall x\in R\)
e) \(x^2-5x+2017=\left(x^2-5x+\frac{25}{4}\right)+\frac{8043}{4}=\left(x-\frac{5}{2}\right)^2+\frac{8043}{4}\ge\frac{8043}{4}>0\)đúng \(\forall x\in R\)
a ) \(x^2+4x+5=x^2+2.x.2+2^2+1=\left(x+2\right)^2+1\)
\(Do\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)
b) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(Do\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)
c)\(-\left(4x^2-12x+9\right)-1=-\left(2x-3\right)^2-1\)
\(Do-\left(2x-3\right)\le0\Rightarrow-\left(2x-3\right)-1\le-1\forall x\)
\(x^2+2.x.2+2^2+5-4\) \(\Rightarrow\left(x+2\right)^2+5-4\) \(\Rightarrow\left(x+2\right)^2+1\)
vì \(\left(x+2\right)^2\ge0\) \(\Rightarrow\left(x+2\right)^2+1\ge1\) \(\ge0\) \(\Rightarrow dpcm\)
b) \(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\) \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
vì \(\left(x+\frac{1}{2}\right)^2\ge0\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\ge0\) \(\Rightarrow dpcm\)
c) \(12x-4x^2-10=-\left(4x^2-12x+10\right)\) = \(\left[\left(2x\right)^2-2.2x.3+3^2\right]+10-3^2\)
\(\Rightarrow\left(2x-3\right)^2+10-9\) \(\Rightarrow\left(2x-3\right)^2+1\) vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1hay\ge0\left(1>0\right)\Rightarrow dpcm\)
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(A=x^2+6x+10=\left(x+3\right)^2+1\)
\(\left(x+3\right)^2\ge0\)
\(\Rightarrow\left(x+3\right)^2+1\ge1\)
\(\Rightarrow A\ge1\)
\(\Rightarrow A>0\)
\(A=9x^2-6x+2=\left(3x\right)^2-2.3x+1+1=\left(3x-1\right)^2+1>0\forall x\)
Vậy ta có đpcm
\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1>0\forall x;y\)
Vậy ta có đpcm
1/
a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)
b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)
2/
a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x-1=0 <=> x=1
Vậy Pmax = 4 khi x = 1
b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy Mmax = 3/4 khi x = 1/2, y = -3
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
x2 - 6x + 10
= x2 - 2.x.3 + 32 + 1
= ( x - 3 )2 + 1
Vì \(\left(x-3\right)^2\ge0\forall x\)
1 > 0
=> \(\left(x-3\right)^2+1\ge0\forall x\) ( đpcm )
Study well
Ta có A = -3x2 - 6x - 9
= -3(x2 + 2x + 3) = -3(x2 + 2x + 1 + 2) = -3(x + 1)2 - 6 \(\le-6< 0\)
b) Ta có B = x2 - 5x + 10
= \(x^2-2.\frac{5}{2}x+\frac{25}{4}+\frac{15}{4}=\left(x-\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)(đpcm)
Trả lời:
A = - 3x2 - 6x - 9 = - 3 ( x2 + 2x + 3 ) = - 3 ( x2 + 2.x.1 + 1 + 2 ) = - 3 [ ( x + 1 )2 + 2 ] = - 3 ( x + 1 )2 - 6
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow-3\left(x+1\right)^2\le0\forall x\)
\(\Leftrightarrow-3\left(x+1\right)^2-6\le-6\forall x\)
\(\Leftrightarrow A\le-6< 0\forall x\)
Vậy A < 0 với mọi x
\(B=x^2-5x+10=x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\)
Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\forall x\)
\(\Leftrightarrow B\ge\frac{15}{4}>0\forall x\)
Vậy B > 0 với mọi x