K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

 

\(\frac{N}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)

\(\frac{N}{2}=N-\frac{N}{2}=\frac{1}{2}-\frac{1}{2^{100}}\Rightarrow N=1-\frac{1}{2^{99}}

9 tháng 9 2016

vì 1/2+1/2 =1/2 bình nên A<1

12 tháng 7 2019

B = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(\Rightarrow\)3B = \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

Lấy 3B - B = \(\left(1+\frac{1}{3}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)

         2B     = \(1-\frac{1}{3^{99}}\)

           B     = \(\left(1-\frac{1}{3^{99}}\right):2\)

                   = \(\left(1-\frac{1}{3^{99}}\right).\frac{1}{2}\)

                   = \(1.\frac{1}{2}-\frac{1}{3^{99}}.\frac{1}{2}\)

                   = \(\frac{1}{2}-\frac{1}{3^{99}.2}< \frac{1}{2}\)

\(\Rightarrow B< \frac{1}{2}\left(đpcm\right)\)

17 tháng 3 2019

A=[1/1+1/2+....+1/98]*2*4*...*98*3*33=A=[1/1+1/2+....+1/98]*2*4*....*98*99\(⋮\)99

17 tháng 3 2019

\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times3\times4\times...\times98\)

\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times3\times4\times...\times33\times...\times98\)

\(A=\left(3\times33\right)\times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times4\times...\times98\)

\(A=99\times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times4\times...\times98\)

Vậy \(A⋮99\)(Vì A có thừa số 99)

28 tháng 10 2019

\(\frac{B}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)

\(\frac{B}{2}=B-\frac{B}{2}=\frac{1}{2}-\frac{1}{2^{100}}< 1\)