cho đường thẳng y=mx+m-1
a) Tìm m để đường thẳng đã cho đi qua điểm
A(−3;2)
a) Chứng minh đường thẳng đã cho luôn đi qua một điểm cố định
b) Tìm m để đường thẳng đã cho tạo với hai trục tọa độ một tam giác có diện tích bằng 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Phương trình hoành độ giao điểm là:
x-7=-2x-1
=>x+2x=-1+7
=>3x=6
=>x=2
Thay x=2 vào y=x-7, ta được:
y=2-7=-5
=>A(2;-5)
b: Thay x=2 và y=-5 vào y=mx+1, ta được:
\(m\cdot2+1=-5\)
=>2m=-6
=>m=-3
a: (d)'//(d) nên (d'): y=-3x+b
Thay x=1 và y=2 vào (d'), ta được:
b-3=2
=>b=5
=>y=-3x+5
b: PTHĐGĐ là;
mx^2+3x-1=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về cùng một phía so với trục tung thì
(-3)^2-4*m*(-1)>0 và -1/m>0
=>m<0 và 9+4m>0
=>m<0 và m>-9/4
=>-9/4<m<0
a: y=mx+3
Thay x=1 và y=0 vào (d), ta được:
m+3=0
=>m=-3
b: PTHĐGĐ là:
x^2-mx-3=0
Vì a*c=-3<0
nên (P) luôn cắt (d) tại hai điểm phân biệt
|x1-x2|=2
=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
=>\(\sqrt{m^2-4\left(-3\right)}=2\)
=>m^2+12=4
=>m^2=-8(loại)
=>KO có m thỏa mãn đề bài