K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

A B C D E

a)     Ta có:  AB = AC  (tam giác ABC cân tại A)

                AE = EB, AD = DC   (D là trung điểm AC, E là trung điểm AB, gt)

             => AE = AD    (1)

Xét 2 tam giác:   ABD  và  ACE, có:

                  AB = AC  (tam giác ABC cân tại A, gt)          

               Góc A là góc chung

                 AE = AD   (1)

=> tam giác ABD = tam giác ACE   (c.g.c)

=> BD = CE   (2 cạnh tương ứng)

18 tháng 1 2019

a, xét tam giác AEC và tam giác ADB có: AC=AB(gt); AE=AD(gt); góc A chung 

suy ra 2 tam giác bằng nhau

suy ra BD=CE

b, do 2 tam giác ở câu a bằng nhau nên góc ACE= góc ABD

mà góc ABC=ACB

suy ra góc DBC=góc ECB

suy ra tam giác IDE cân tại I

18 tháng 1 2019

A B C D E I

a) Ta có: t/giác ABC cân tại A => góc B = góc C

                                                => AB = AC (1)

Mà AE + EB = AB  (2)

    AD + DC = AC (3)

và AE = EB (gt) ; AD = DC (gt) (4)

Từ (1);(2);(3);(4) suy ra EB = DC = AE = AD

Xét t/giác CBD và t/giác BCE

có DC = BE (cmt)

   góc B = góc C (cmt)

  BC : chung

=> t/giác CBD = t/giác BCE (c.g.c)

=> BD = CE (hai cạnh tương ứng)

b) Ta có: t/giác CBD = t/giác BCE (cmt)

=> góc BEC = góc BDC (hai cạnh tương ứng)

Xét t/giác EBI và t/giác DCI

có góc BEC = góc BDC (cmt)

    BE = DC (cmt)

 góc EIB = góc DIC (đối đỉnh)

=> t/giác EBI = t/giác DCI(g.c.g)

=> IE = ID (hai cạnh tương ứng)

=> t/giác IDE cân tại I

24 tháng 1 2021

undefined

\(a,\text{Do }\Delta ABC\text{ cân tại A}\Rightarrow AB=AC\)

\(\text{Xét }\Delta ABD\text{ và }\Delta ACE\text{ có:}\)

\(AB=AC\left(cmt\right)\left(1\right)\)

\(\widehat{A}\text{ chung}\left(2\right)\)

\(AD=AE\left(gt\right)\left(3\right)\)

\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\left(\text{2 góc tương ứng}\right)\)

\(\text{Vậy }\widehat{ABD}=\widehat{ACE}\)

\(b,+\text{)}\widehat{ABD}=\widehat{ACE}\left(\text{câu a}\right)\text{ hay }\widehat{EBI}=\widehat{DCI}\)

\(+\text{)}\text{Ta có: }AE+BE=AB,AD+CD=AC\)

\(\text{Mà }AE=AD\left(\text{câu a}\right),AB=AC\left(\text{câu a}\right)\)

\(\Rightarrow BE=CD\)

\(+\text{)Xét }\Delta EBI\text{ có:}\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(4\right)\)

\(\text{Xét }\Delta DCI\text{ có:}\widehat{DCI}+\widehat{CID}+\widehat{IDC}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(5\right)\)

\(\text{Từ (4) và (5)}\Rightarrow\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=\widehat{DCI}+\widehat{CID}+\widehat{IDC}\)

\(\text{Mà }\widehat{EBI}=\widehat{DCI}\left(cmt\right),\widehat{BIE}=\widehat{CID}\left(\text{đối đỉnh}\right)\)

\(\Rightarrow\widehat{IEB}=\widehat{IDC}\)

\(\text{Xét }\Delta EBI\text{ và }\Delta DCI\text{ có:}\)

\(\widehat{IEB}=\widehat{IDC}\left(cmt\right)\left(6\right)\)

\(BE=CD\left(cmt\right)\left(7\right)\)

\(\widehat{EBI}=\widehat{DCI}\left(cmt\right)\left(8\right)\)

\(\text{Từ (6),(7) và (8)}\Rightarrow\Delta EBI=\Delta DCI\left(g.c.g\right)\)

\(\Rightarrow BI=CI\left(\text{2 cạnh tương ứng}\right)\)

\(\Rightarrow\Delta IBC\text{ cân tại I}\)

\(\text{Vậy }\Delta IBC\text{ là tam giác cân}\)

\(c,+\text{)Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)

\(\)\(\text{Xét }\Delta ABM\text{ và }\Delta ACM\text{ có:}\)

\(AB=AC\left(\text{câu a}\right)\left(9\right)\)

\(AM\text{ chung}\left(10\right)\)

\(BM=CM\left(cmt\right)\left(11\right)\)

\(\text{Từ (9),(10) và (11)}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\left(\text{2 góc tương ứng}\right)\)

\(\Rightarrow AM\text{ là tia phân giác }\widehat{BAC}\)

\(+\text{)}\Delta EBI=\Delta DCI\left(\text{câu b}\right)\)

\(\Rightarrow EI=DI\left(\text{2 cạnh tương ứng}\right)\)

\(\text{Xét }\Delta EAI\text{ và }\Delta DAI\text{ có:}\)

\(EI=DI\left(cmt\right)\left(12\right)\)

\(AI\text{ chung}\left(13\right)\)

\(AE=AD\left(gt\right)\left(14\right)\)

\(\text{Từ (12),(13) và (14)}\Rightarrow\Delta EAI=\Delta DAI\left(c.c.c\right)\)

\(\Rightarrow\widehat{EAI}=\widehat{DAI}\left(\text{2 góc tương ứng}\right)\)

\(\Rightarrow AI\text{ là tia phân giác }\widehat{EAD}\)

\(\text{Hay }AI\text{ là tia phân giác }\widehat{BAC}\left(\text{do E}\in AB,D\in AC\right)\left(15\right)\)

\(\text{Mà }AM\text{ là tia phân giác }\widehat{BAC}\left(cmt\right)\left(16\right)\)

\(\text{Từ (15) và (16)}\Rightarrow A,I.M\text{ thẳng hàng}\left(đpcm\right)\)

24 tháng 8 2017

câu b và c dính đến trung tuyến rồi ns lại vs thầy cô đi

24 tháng 8 2017

cho số đi bạn ơi như thế thì ai ma trả lơi được chứ

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: Xét ΔABD có AB=AD

nên ΔABD cân tại A

Ta có: ΔABD cân tại A

mà AI là đường phân giác

nên I là trung điểm của BD

c: Xét ΔABC có AE là phân giác

nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)

mà AB<AC

nên BE<CE

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

Suy ra: EC=DB

b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có 

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó:ΔOEB=ΔODC

c: Ta có: ΔOEB=ΔODC

nên OB=OC

Xét ΔAOB và ΔAOC có

AO chung

OB=OC

AB=AC
Do đó: ΔAOB=ΔAOC

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC