Cho tam giác ABC cân tại A gọi D là trung điểm của AC ,E là trung điểm của AB
a, So sánh BD và CE
b, So sánh BD và BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AEC và tam giác ADB có: AC=AB(gt); AE=AD(gt); góc A chung
suy ra 2 tam giác bằng nhau
suy ra BD=CE
b, do 2 tam giác ở câu a bằng nhau nên góc ACE= góc ABD
mà góc ABC=ACB
suy ra góc DBC=góc ECB
suy ra tam giác IDE cân tại I
a) Ta có: t/giác ABC cân tại A => góc B = góc C
=> AB = AC (1)
Mà AE + EB = AB (2)
AD + DC = AC (3)
và AE = EB (gt) ; AD = DC (gt) (4)
Từ (1);(2);(3);(4) suy ra EB = DC = AE = AD
Xét t/giác CBD và t/giác BCE
có DC = BE (cmt)
góc B = góc C (cmt)
BC : chung
=> t/giác CBD = t/giác BCE (c.g.c)
=> BD = CE (hai cạnh tương ứng)
b) Ta có: t/giác CBD = t/giác BCE (cmt)
=> góc BEC = góc BDC (hai cạnh tương ứng)
Xét t/giác EBI và t/giác DCI
có góc BEC = góc BDC (cmt)
BE = DC (cmt)
góc EIB = góc DIC (đối đỉnh)
=> t/giác EBI = t/giác DCI(g.c.g)
=> IE = ID (hai cạnh tương ứng)
=> t/giác IDE cân tại I
\(a,\text{Do }\Delta ABC\text{ cân tại A}\Rightarrow AB=AC\)
\(\text{Xét }\Delta ABD\text{ và }\Delta ACE\text{ có:}\)
\(AB=AC\left(cmt\right)\left(1\right)\)
\(\widehat{A}\text{ chung}\left(2\right)\)
\(AD=AE\left(gt\right)\left(3\right)\)
\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\left(\text{2 góc tương ứng}\right)\)
\(\text{Vậy }\widehat{ABD}=\widehat{ACE}\)
\(b,+\text{)}\widehat{ABD}=\widehat{ACE}\left(\text{câu a}\right)\text{ hay }\widehat{EBI}=\widehat{DCI}\)
\(+\text{)}\text{Ta có: }AE+BE=AB,AD+CD=AC\)
\(\text{Mà }AE=AD\left(\text{câu a}\right),AB=AC\left(\text{câu a}\right)\)
\(\Rightarrow BE=CD\)
\(+\text{)Xét }\Delta EBI\text{ có:}\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(4\right)\)
\(\text{Xét }\Delta DCI\text{ có:}\widehat{DCI}+\widehat{CID}+\widehat{IDC}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(5\right)\)
\(\text{Từ (4) và (5)}\Rightarrow\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=\widehat{DCI}+\widehat{CID}+\widehat{IDC}\)
\(\text{Mà }\widehat{EBI}=\widehat{DCI}\left(cmt\right),\widehat{BIE}=\widehat{CID}\left(\text{đối đỉnh}\right)\)
\(\Rightarrow\widehat{IEB}=\widehat{IDC}\)
\(\text{Xét }\Delta EBI\text{ và }\Delta DCI\text{ có:}\)
\(\widehat{IEB}=\widehat{IDC}\left(cmt\right)\left(6\right)\)
\(BE=CD\left(cmt\right)\left(7\right)\)
\(\widehat{EBI}=\widehat{DCI}\left(cmt\right)\left(8\right)\)
\(\text{Từ (6),(7) và (8)}\Rightarrow\Delta EBI=\Delta DCI\left(g.c.g\right)\)
\(\Rightarrow BI=CI\left(\text{2 cạnh tương ứng}\right)\)
\(\Rightarrow\Delta IBC\text{ cân tại I}\)
\(\text{Vậy }\Delta IBC\text{ là tam giác cân}\)
\(c,+\text{)Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)
\(\)\(\text{Xét }\Delta ABM\text{ và }\Delta ACM\text{ có:}\)
\(AB=AC\left(\text{câu a}\right)\left(9\right)\)
\(AM\text{ chung}\left(10\right)\)
\(BM=CM\left(cmt\right)\left(11\right)\)
\(\text{Từ (9),(10) và (11)}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\left(\text{2 góc tương ứng}\right)\)
\(\Rightarrow AM\text{ là tia phân giác }\widehat{BAC}\)
\(+\text{)}\Delta EBI=\Delta DCI\left(\text{câu b}\right)\)
\(\Rightarrow EI=DI\left(\text{2 cạnh tương ứng}\right)\)
\(\text{Xét }\Delta EAI\text{ và }\Delta DAI\text{ có:}\)
\(EI=DI\left(cmt\right)\left(12\right)\)
\(AI\text{ chung}\left(13\right)\)
\(AE=AD\left(gt\right)\left(14\right)\)
\(\text{Từ (12),(13) và (14)}\Rightarrow\Delta EAI=\Delta DAI\left(c.c.c\right)\)
\(\Rightarrow\widehat{EAI}=\widehat{DAI}\left(\text{2 góc tương ứng}\right)\)
\(\Rightarrow AI\text{ là tia phân giác }\widehat{EAD}\)
\(\text{Hay }AI\text{ là tia phân giác }\widehat{BAC}\left(\text{do E}\in AB,D\in AC\right)\left(15\right)\)
\(\text{Mà }AM\text{ là tia phân giác }\widehat{BAC}\left(cmt\right)\left(16\right)\)
\(\text{Từ (15) và (16)}\Rightarrow A,I.M\text{ thẳng hàng}\left(đpcm\right)\)
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
b: Xét ΔABD có AB=AD
nên ΔABD cân tại A
Ta có: ΔABD cân tại A
mà AI là đường phân giác
nên I là trung điểm của BD
c: Xét ΔABC có AE là phân giác
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)
mà AB<AC
nên BE<CE
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Suy ra: EC=DB
b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{EBO}=\widehat{DCO}\)
Do đó:ΔOEB=ΔODC
c: Ta có: ΔOEB=ΔODC
nên OB=OC
Xét ΔAOB và ΔAOC có
AO chung
OB=OC
AB=AC
Do đó: ΔAOB=ΔAOC
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
a) Ta có: AB = AC (tam giác ABC cân tại A)
AE = EB, AD = DC (D là trung điểm AC, E là trung điểm AB, gt)
=> AE = AD (1)
Xét 2 tam giác: ABD và ACE, có:
AB = AC (tam giác ABC cân tại A, gt)
Góc A là góc chung
AE = AD (1)
=> tam giác ABD = tam giác ACE (c.g.c)
=> BD = CE (2 cạnh tương ứng)