a) Chứng Minh Rằng : E = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< 1\)
b) Tìm Các Số Nguyên n để : \(\frac{2n-1}{n+8}-\frac{n-14}{n+8}\)Là Số Nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) để A là số nguyên thì \(n\ne1\)
b) để \(A=\frac{5}{n-1}\)là số nguyên thì n-1 là ước nguyên của 5
\(n-1=1\Rightarrow n=2\)
\(n-1=5\Rightarrow n=6\)
\(n-1=-1\Rightarrow n=0\)
\(n-1=-5\Rightarrow n=-4\)
kl : n\(\in\){ 2; 6; 0; -4 }
2) Gọi d là ước chung lớn nhất của n và n+1
\(\Rightarrow n⋮d;n+1⋮d\)
\(\Rightarrow\left(n+1-n\right)⋮d\)
\(\Rightarrow1⋮d\)
Vì ước chung lớn nhất của n và n+1 là 1 nên n/n+1 là phân số tối giản
3) Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức ta có
\(\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
..............................
\(\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}< 1\)
\(\Rightarrow\)\(1-\frac{1}{50}< 1\)
\(\Rightarrow\)\(\frac{49}{50}< 1\Rightarrow dpcm\)
4) \(S=\frac{2^{2009}-1}{1-2^{2009}}\)
Ai thấy đúng thì ủng hộ mink nha !!!
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)
\(S=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+....+1+\frac{1}{n}-\frac{1}{n+1}\)
\(=n+1-\frac{1}{n+1}=\frac{\left(n+1\right)^2-1}{n+1}=\frac{2009^2-1}{2009}\Rightarrow n+1=2009\Rightarrow n=2008\)
Bài 1:
Vì n nguyên nên để A nhận giá trị nguyên thì :
\(n+3⋮n-5\\ \Leftrightarrow n-5+8⋮n-5\\ \Rightarrow8⋮n-5\\ \Rightarrow n-5\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\\ \Rightarrow n\in\left\{4;6;3;7;1;9;-3;13\right\}\\ Vậy...\)
Bài 3;
Gọi \(UCLN_{\left(5n+1,20n+3\right)}=d\)
\(\Rightarrow\left\{{}\begin{matrix}5n+1⋮d\\20n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}20n+4⋮d\\20n+3⋮d\end{matrix}\right.\\ \Rightarrow\left(20n+4\right)-\left(20n+3\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d\in\left\{-1;1\right\}\)
\(UCLN_{\left(5n+1,20n+3\right)}=1\\ \Rightarrow Phânsốđãchotốigiản\\ \RightarrowĐpcm\)
\(1.\)Để A nguyên thì n+3⋮n−5 (1)
Vì n-5⋮n-5 (2)
Từ (1) và (2) ⇒ n+3-n+5⋮n-5
⇒ 8⋮n-5
⇒ n-5 ∈ Ư(8) = \(\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
⇒ n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)
Vậy n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)thì A là số nguyên
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
Giúp tui ik cần gấp