\(\sqrt{1.5}.\sqrt{1,2}.\sqrt{500}=\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: \(C=\left(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}-\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\right):\sqrt{48}\)
\(=\dfrac{4+2\sqrt{3}-4+2\sqrt{3}}{2}:4\sqrt{3}\)
\(=\dfrac{1}{2}\)
a: \(=2\sqrt{5}-2\sqrt{5}+9\sqrt{5}-30\sqrt{5}=-21\sqrt{5}\)
b: \(=2\sqrt{7}-6\sqrt{7}-\dfrac{3}{4}\sqrt{7}-8\sqrt{7}=-\dfrac{51}{4}\sqrt{7}\)
\(\sqrt{3783025}=1945\)
\(\sqrt{1125\cdot45}=\sqrt{50625}=225\)
\(\sqrt{\dfrac{0,3+1,2}{0,7}}=\sqrt{\dfrac{15}{7}}=\dfrac{\sqrt{105}}{7}\)
\(\sqrt{\dfrac{6,4}{1,2}}=\sqrt{\dfrac{16}{3}}=\dfrac{4\sqrt{3}}{3}\)
\(\sqrt{3783025}=1945\) \(\sqrt{1125.45}=\sqrt{50625}=225\) \(\sqrt{\dfrac{0,3+1,2}{0,7}}=\sqrt{\dfrac{1,5}{0,7}}=\sqrt{\dfrac{105}{7}}=1,4638...\) \(\sqrt{\dfrac{6,4}{1,2}}=\sqrt{\dfrac{16}{3}}=5,\left(3\right)\)
g: \(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)
=-(căn 5+2)(căn 5-2)
=-(5-4)=-1
h: \(=\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\dfrac{\sqrt{30}}{3}\right)\left(\dfrac{\sqrt{30}}{5}+\sqrt{2}-\dfrac{4}{5}\sqrt{5}\right)\)
=4/5*căn 10+4/3*căn 6-16/15*căn 15+2/5*căn 15+2-4/5*căn 10+30/15+2/3*căn 15-4/3*căn 6
=4
\(\left(\frac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)
\(=\frac{4\sqrt{10}}{5}+\frac{4\sqrt{6}}{3}-\frac{16\sqrt{15}}{15}+\frac{2\sqrt{15}}{5}+4-\frac{4\sqrt{10}}{5}+2+\frac{2\sqrt{15}}{3}-\frac{4\sqrt{6}}{3}\)
\(=4\)
Bài 2:
a: \(=\sqrt{2}-\dfrac{2}{5}\sqrt{2}+2\sqrt{2}+2\sqrt{2}=\dfrac{23}{5}\sqrt{2}\)
\(\sqrt{1.5}\sqrt{1.2}\sqrt{500}\)
\(=\sqrt{900}\)
\(=30\)
\(\sqrt{1,5}\cdot\sqrt{1,2}\cdot\sqrt{500}=\sqrt{1,5\cdot1,2\cdot500}\)
\(=\sqrt{900}=30\)