Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(=\sqrt{\frac{5.5^2}{3^5.2^6}}=\sqrt{\frac{5}{3^5}}.\frac{5}{2^3}=\frac{5\sqrt{5.3^5}}{3^5.2^3}\)
b)\(=\left(3\sqrt{5}-2\sqrt{5}+\sqrt{5}\right):\sqrt{6}\)
\(=\frac{2\sqrt{5}}{\sqrt{6}}\)\(=\frac{\sqrt{30}}{3}\)
Câu c ttự
d)\(=\sqrt{2^8.5^2}=2^4.5=80\)
e)\(=\sqrt{\left(\frac{3}{4}\right)^2:\left(\frac{5}{6}\right)^2}=\frac{9}{10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\sqrt{\frac{72}{9}}:\sqrt{8}=\frac{\sqrt{72}}{\sqrt{9}}.\frac{1}{\sqrt{8}}\)
\(=\frac{6\sqrt{2}}{3}.\frac{1}{2\sqrt{2}}\)
\(=1\)
\(b,\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}\)
\(=33\sqrt{3}:\sqrt{3}\)
\(=33\)
\(c,\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}=\left(5\sqrt{5}+7\sqrt{5}-\sqrt{5}\right):\sqrt{5}\)
\(=11\sqrt{5}:\sqrt{5}\)
\(=11\)
\(d,\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{7}\right):\sqrt{7}=\left(\frac{1}{\sqrt{7}}-\frac{4}{\sqrt{7}}+\frac{7}{\sqrt{7}}\right):\sqrt{7}\)
\(=\frac{4}{\sqrt{7}}.\frac{1}{\sqrt{7}}=\frac{4}{7}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Đề sai
b/ \(\sqrt{125}-4\sqrt{45}+3\sqrt{2}-\sqrt{80}=5\sqrt{5}-12\sqrt{5}+3\sqrt{2}-4\sqrt{5}\)
\(=-11\sqrt{5}+3\sqrt{2}\)
c/ \(2\sqrt{\frac{27}{4}}-\sqrt{\frac{48}{9}}-\frac{2}{5}\sqrt{\frac{75}{16}}=2.\frac{3\sqrt{3}}{2}-\frac{4\sqrt{3}}{3}-\frac{2}{5}.\frac{5\sqrt{3}}{4}\)
\(=3\sqrt{3}-\frac{4\sqrt{3}}{3}-\frac{\sqrt{3}}{2}=\sqrt{3}\left(3-\frac{4}{3}-\frac{1}{2}\right)=\frac{7\sqrt{3}}{6}\)
d/ \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\cdot\sqrt{11}+3\sqrt{22}=33-3\sqrt{22}-11+3\sqrt{22}=22\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
\(2\sqrt{5}-\sqrt{125}-\sqrt{80}\\ =2\sqrt{5}-\sqrt{25\cdot5}-\sqrt{16\cdot5}\\ =2\sqrt{5}-5\sqrt{5}-4\sqrt{5}\\ =-7\sqrt{5}\)
2,
\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}\\ =3\sqrt{2}-\sqrt{4\cdot2}+\sqrt{25\cdot2}-4\sqrt{16\cdot2}\\ =3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}\\=-10\sqrt{2}\)
3,
\(\sqrt{18}-3\sqrt{80}-2\sqrt{50}+2\sqrt{45}\\ =\sqrt{9\cdot2}-3\sqrt{16\cdot5}-2\sqrt{25\cdot2}+2\sqrt{9\cdot5}\\ =3\sqrt{2}-12\sqrt{5}-10\sqrt{2}+6\sqrt{5}\\ =-7\sqrt{2}-6\sqrt{5}\)
4,
\(\sqrt{27}-2\sqrt{3}+2\sqrt{48}-3\sqrt{75}\\ =\sqrt{9\cdot3}-2\sqrt{3}+2\sqrt{16\cdot3}-3\sqrt{25\cdot2}\\ =3\sqrt{3}-2\sqrt{3}+8\sqrt{3}-15\sqrt{3}\\ =-6\sqrt{3}\)
5,
\(3\sqrt{2}-4\sqrt{18}+\sqrt{32}-\sqrt{50}\\ =3\sqrt{2}-4\sqrt{9\cdot2}+\sqrt{16\cdot2}-\sqrt{25\cdot2}\\ =3\sqrt{2}-12\sqrt{2}+4\sqrt{2}-5\sqrt{2}\\ =-10\sqrt{2}\)
6,
\(2\sqrt{3}-\sqrt{75}+2\sqrt{12}-\sqrt{147}\\ =2\sqrt{3}-\sqrt{25\cdot3}+2\sqrt{4\cdot3}-\sqrt{49\cdot3}\\ =2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}\\ =-6\sqrt{3}\)
7,
\(\sqrt{20}-2\sqrt{45}-3\sqrt{80}+\sqrt{125}\\ =\sqrt{4\cdot5}-2\sqrt{9\cdot5}-3\sqrt{16\cdot5}+\sqrt{25\cdot5}\\ =2\sqrt{5}-6\sqrt{5}-12\sqrt{5}+5\sqrt{5}\\ =-11\sqrt{5}\)
8,
\(6\sqrt{12}-\sqrt{20}-2\sqrt{27}+\sqrt{125}\\ =6\sqrt{4\cdot3}-\sqrt{4\cdot5}-2\sqrt{9\cdot3}+\sqrt{25\cdot5}\\ =12\sqrt{3}-2\sqrt{5}-6\sqrt{3}+5\sqrt{5}\\ =6\sqrt{3}+3\sqrt{5}\\ =3\left(2\sqrt{3}+\sqrt{5}\right)\)
9,
\(4\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\\ =4\sqrt{4\cdot6}-2\sqrt{9\cdot6}+3\sqrt{6}-\sqrt{25\cdot6}\\ =8\sqrt{6}-6\sqrt{6}+3\sqrt{6}-5\sqrt{6}=0\)
10,
\(2\sqrt{18}-3\sqrt{80}-5\sqrt{147}+5\sqrt{245}-3\sqrt{98}\\ =2\sqrt{9\cdot2}-3\sqrt{16\cdot5}-5\sqrt{49\cdot3}+5\sqrt{49\cdot5}-3\sqrt{49\cdot2}\\ =6\sqrt{2}-12\sqrt{5}-35\sqrt{3}+35\sqrt{5}-21\sqrt{2}\\ =-15\sqrt{2}-35\sqrt{3}+23\sqrt{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,\(4\sqrt{5}+2\sqrt{5}-\sqrt{5}-15\sqrt{5}=-10\sqrt{5}\)
2,\(8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
3,\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}=33\)
4,\(7\sqrt{7a}+3\sqrt{7a}-2\sqrt{7a}=8\sqrt{7a}\)
5,\(-6\sqrt{a}-\sqrt{6a}+\sqrt{6a}=-6\sqrt{a}\)
6,\(8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
\(3\sqrt{45}-7\sqrt{125}+\sqrt{500}+16\sqrt{9-4\sqrt{5}}\\ =9\sqrt{5}-35\sqrt{5}+10\sqrt{5}+16\sqrt{\left(\sqrt{5}-2\right)^2}\\ =-16\sqrt{5}+16\left(\sqrt{5}-2\right)\\ =-16\sqrt{5}+16\sqrt{5}-32\\ =-32\)