K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=3/4.8/9 . 25/16........2499/2500

= 1.3/2.2 . 2.4/3.3 . ..... . 49.51/50.50

= 1.3.2.4......49.50 /   2.2.3.3.4.4.......50.50

=(1.2.3.4.....49/2.3.4.5....50) .  ( 3.4.5.6.....51 / 2.3.4.5....50)

=1/50 . 51/2

=51/100

AH
Akai Haruma
Giáo viên
31 tháng 12 2021

Lời giải:

$\frac{1}{4}< \frac{1}{1.2}$

$\frac{1}{9}< \frac{1}{2.3}$

$\frac{1}{16}< \frac{1}{3.4}$

....

$\frac{1}{2500}< \frac{1}{49.50}$

Cộng theo vế:

$A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1$

Ta có đpcm.

4 tháng 1 2022

Em cần làm gì để bảo tồn nề văn hóa Sa Huỳnh  
Giải câu này giùm em với ạ

 

6 tháng 6 2016

Bạn xem ở câu hỏi tương tự , các cách lm bài đều ở đó , bạn tham khảo nhé 

6 tháng 6 2016

ta thấy : 1/4 > 1/9 > 1/16 > ...... > 1/2500

Mà 1/4 < 1

=> 1/4 + 1/9 + 1/16 + .... + 1/2500 < 1

12 tháng 2 2020

Ta có :  \(A=1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{2500}=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

=> A < 2 (ĐPCM)

=(1-1/3)(1-1/4)(1-1/5)*...*(1-1/50)(1+1/3)(1+1/4)*...*(1+1/50)

=2/3*3/4*...*49/50*4/3*5/4*...*51/50

=2/50*51/3=17*1/25=17/25

11 tháng 7 2023

\(\left(1-\dfrac{1}{9}\right)\cdot\left(1-\dfrac{1}{16}\right)\cdot\left(1-\dfrac{1}{25}\right)\cdot...\cdot\left(1-\dfrac{1}{2500}\right)\)

\(=\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\cdot\left(\dfrac{16}{16}-\dfrac{1}{16}\right)\cdot...\cdot\left(\dfrac{2500}{2500}-\dfrac{1}{2500}\right)\)

\(=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)

\(=\dfrac{8\cdot15\cdot24\cdot...\cdot2499}{9\cdot16\cdot25\cdot...\cdot2500}\)

\(=\dfrac{\left(2\cdot4\right)\cdot\left(3\cdot5\right)\cdot\left(4\cdot6\right)\cdot....\cdot\left(49\cdot51\right)}{\left(3\cdot3\right)\cdot\left(4\cdot4\right)\cdot\left(5\cdot5\right)\cdot...\cdot\left(50\cdot50\right)}\)

\(=\dfrac{\left(2\cdot3\cdot4\cdot5\cdot...\cdot49\right)\left(4\cdot5\cdot6\cdot...\cdot51\right)}{\left(2\cdot3\cdot4\cdot...\cdot50\right)\left(2\cdot3\cdot4\cdot...\cdot50\right)}\)

\(=\dfrac{1\cdot51}{50\cdot2}\)

\(=\dfrac{51}{100}\)

8 tháng 6 2015

Cái này là tính 1*1+2*2+3*3+4*4+......+50*50