cho M =1+2+3+...+49/101+102+103+...+149 rút gon M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)
a, Đặt A = 1/101 + 1/101 + 1/103 +...+ 1/150
A là tổng 50 số giảm dần, và số nhỏ nhất là 1/150
Vậy nên A > 50 x 1/150
=> A > 1/3
b, ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
Chứng minh:\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{149}+\frac{1}{150}>\frac{1}{3}\)
Chưa hiểu lắm đề câu 1 :v thôi làm tạm câu 2 nhé (sửa lại đề câu 1 đi -_-)
Ta có : $\dfrac{1}{101}<\dfrac{1}{100};\dfrac{1}{102}<\dfrac{1}{100};...;\dfrac{1}{200}<\dfrac{1}{100}$
Vì A có 100 phân số : $(200-101):1+1=100$
$=>A<\dfrac{1}{100}.100=1$
1/ \(\dfrac{1}{101}>\dfrac{1}{102};...;\dfrac{1}{101}>\dfrac{1}{200}\)
2/ Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{101}< \dfrac{1}{100}\\...\\\dfrac{1}{200}< \dfrac{1}{100}\end{matrix}\right.\Rightarrow A=\dfrac{1}{101}+...+\dfrac{1}{200}< \dfrac{1}{100}+...+\dfrac{1}{100}\)
( 100 phân số \(\dfrac{1}{100}\) )
\(\Rightarrow A< \dfrac{1}{100}.100=1\)
\(\Rightarrowđpcm\)
M=101^102+1/101^103+1
M=101^102+1/101^102*101+1
M=1/101+2
M=1/102
N=101^103+1/101^104+1
N=101^103+1/101^103*101+1
N=1/101+1
N=1/102
Vậy N=M
Ta có: \(1+2+3+...+49=\frac{49\times50}{2}=49\times25\)
\(101+102+103+...+149=100\times49+1+2+3+...+49=100\times49+\frac{49\times50}{2}\)
\(=49\times125\)
Suy ra \(M=\frac{1+2+3+...+49}{101+102+103+...+149}=\frac{49\times25}{49\times125}=\frac{1}{5}\)