x^m+4+x^m+3-x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M=\dfrac{x-7}{x-4\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-7+\sqrt{x}-3-\sqrt{x}+1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\)
b) Để \(M>\dfrac{3}{4}\) thì \(M-\dfrac{3}{4}>0\)
\(\Leftrightarrow\dfrac{\sqrt{x}+3}{\sqrt{x}-1}-\dfrac{3}{4}>0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+12-3\sqrt{x}+3}{4\left(\sqrt{x}-1\right)}>0\)
\(\Leftrightarrow\sqrt{x}-1>0\)
\(\Leftrightarrow x>1\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>1\\x\ne9\end{matrix}\right.\)
Bài 1:
c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)
Suy ra: \(-12x-3=8x-2-6x-8\)
\(\Leftrightarrow-12x-3-2x+10=0\)
\(\Leftrightarrow-14x+7=0\)
\(\Leftrightarrow-14x=-7\)
\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
\(M_{\left(x\right)}=5x^3+2x^4-x^3+3x^2-x^3-x^4+1-4-x^3.\)
\(=\left(2x^4-x^4\right)+\left(5x^3-x^3-x^3-x^3\right)+3x^2+1-4\)
\(=x^4+2x^3+3x^2-3\)
\(M_1=1^4+2.1^3+3.1^2-3=1+2+3-3=3\)
\(M_{-1}=\left(-1\right)^4+2\left(-1\right)^3+3\left(-1\right)^2-3=1-2+3-3=-1\)
x^(m + 4) + x^(m + 3) - x - 1
=x^m.x^4+x^m.x^3-x-1
=x^m(x^4+x^3)-(x+1)
=x^m.x^3(x+1)-(x+1)
=(x^(m+3)-1)(x+1)