ai giúp em với mai nộp rùi:
Cho a,b,c là các số nguyên dương. Chứng tỏ rằng: a/a+b + b/b+c + c/c+a > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)
\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(1
Ta có \(\frac{a}{a+b+c}\)> \(\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+a}\)> \(\frac{b}{b+c+a+d}\)
tương tự ....
suy ra cái đề > 1 dpcm
a/a+b>a/a+b+c
b/b+c>b/a+b+c
c/c+a>c/a+b+c
Cộng hai vế của biểu thức
M>(a+b+c)/(a+b+c)=1
Vì a+b<a+b+c=>a/a+b>a/a+b+c
Vì b+c<a+b+c=>b/b+c>b/a+b+c
Vì c+a<a+b+c=>c/c+a>c/a+b+c
=>a/a+b+b/b+c+c/c+a>a/a+b+c+b/a+b+c+c/a+b+c=(a+b+c)/(a+b+c)=1
=>a/a+b+b/b+c+c/c+a>1
=>ĐPCM