Cho: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}\)
Chứng minh \(A<\frac{1}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}<\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}...\frac{78}{79}.\frac{79}{80}=\frac{1}{80}<\frac{1}{9}\)
\(\text{Vậy }A<\frac{1}{9}\)
Ta đặt B=\(\frac{2}{3}.\frac{4}{5}...\frac{80}{81}\)
Mà \(\frac{1}{2}<\frac{2}{3};\frac{3}{4}<\frac{4}{5};...;\frac{79}{80}<\frac{80}{81}\)
=>A<B
=>A2<AB=\(\frac{1}{2}.\frac{2}{3}.....\frac{80}{81}=\frac{1}{81}\)
=>A2<\(\frac{1}{81}\)
=>A<\(\sqrt{\frac{1}{81}}=\frac{1}{9}\)(đpcm)
\(\frac{1.3.5...79}{2.4.6...80}\)= \(\frac{1.3.5...79}{\left(1.2\right).\left(2.2\right).\left(3.2\right)...\left(40.2\right)}\).\(\frac{1.3.5...79}{\left(1.2.3.4...40\right).\left(2.2.2.2...2.2\right)}\)=\(\frac{1.3.5...79}{\left(1.3.5...39\right).\left(2.4.6...40\right).2^{40}}\)<1/9
\(C< \frac{2}{3}.\frac{4}{5}......\frac{80}{81}\Rightarrow C.C< \frac{C.2....80}{3.5....81}=\frac{1.2.3....79.80}{2.3.4....81}=\frac{1}{81}=\left(\frac{1}{9}\right)^2mà:C>0\Rightarrow C< \frac{1}{9}\)