K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 7 2021

Pitago tam giác vuông ACD:

\(AC=\sqrt{AD^2+CD^2}=\sqrt{AD^2+AB^2}=20\)

Hệ thức lượng tam giác vuông ABC với đường cao BH:

\(AB^2=AH.AC\Rightarrow AH=\dfrac{AB^2}{AC}=\dfrac{64}{5}\)

\(HC=AC-AH=\dfrac{36}{5}\)

b.

Hai tam giác vuông ADC và AHF có chung góc \(\widehat{HAD}\)

\(\Rightarrow\Delta_VADC\sim\Delta_VAHF\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AC}{AF}\Rightarrow AD.AF=AC.AH\) (1)

Mặt khác theo hệ thức lượng tam giác vuông ABC:

\(AB^2=AH.AC\) (2)

(1);(2) \(\Rightarrow AD.AF=AB^2\)

NV
6 tháng 7 2021

undefined

a: BD\(\perp\)BA

CA\(\perp\)BA

Do đó: BD//CA

Xét ΔEAC có BD//AC

nên \(\dfrac{EB}{BA}=\dfrac{ED}{DC}\)

b:

AC//BD

BD//IK

Do đó: AC//IK

Xét ΔAEI có BD//EI

nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\)(1)

Xét ΔCEK có DB//EK

nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\left(2\right)\)

\(\dfrac{EB}{EA}=\dfrac{DE}{DC}\)

=>\(\dfrac{EB+EA}{EA}=\dfrac{DE+DC}{DC}\)

=>\(\dfrac{AB}{EA}=\dfrac{CE}{DC}\)(3)

Từ (1),(2),(3) suy ra \(\dfrac{DB}{EI}=\dfrac{DB}{EK}\)

=>EI=EK

 

25 tháng 1 2019

a, xét tam giác ABE và tam giác ACD có:

AC=AB(gt)

góc A chung

góc ABE = góc ACD( do ABC= góc ACB, tia p/giác)

suy ra tam giác ABE= tam giác ACD(g.c.g)

suy ra BE=CD, AE=AD(đpcm)

a: AD=12 nên BC=12

AC=20

\(AH=\dfrac{AB^2}{AC}=\dfrac{256}{20}=12.8\left(cm\right)\)

CH=20-12,8=7,2cm

b: Xét ΔAHF vuông tại H và ΔADC vuông tại D có

góc DAC chung

DO đó: ΔAHF đồng dạng với ΔADC

Suy ra: AH/AD=AF/AC

hay \(AD\cdot AF=AH\cdot AC=AB^2\)

a: góc NED+góc NCD=180 độ

=>NEDC nội tiếp

b: ΔAHB vuôg tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2

=>AM*AB=AN*AC

Xét ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC nên ta có:

\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)

\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\)

\(\Leftrightarrow DE^2=23.04\)

hay DE=4,8(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAFD vuông tại A có AE là đường cao ứng với cạnh huyền DF, ta được:

\(DA^2=DE\cdot DF\)

\(\Leftrightarrow DF=\dfrac{6^2}{4.8}=7,5\left(cm\right)\)

Ta có: DE+EF=DF(E nằm giữa D và F)

nên EF=DF-DE=7,5-4,8=2,7(cm)

Áp dụng định lí Pytago vào ΔADE vuông tại E, ta được:

\(AD^2=AE^2+DE^2\)

\(\Leftrightarrow AE^2=6^2-4.8^2=12.96\)

hay AE=3,6(cm)

Xét ΔAEF vuông tại E và ΔABC vuông tại B có 

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF=\dfrac{AE\cdot AC}{AB}=\dfrac{3.6\cdot8}{6}=4.8\left(cm\right)\)

Ta có: AF+FB=AB(F nằm giữa A và B)

nên BF=AB-AF=8-4,8=3,2(cm)

  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao...
Đọc tiếp
  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD.                              d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh GH // AC và PT vuông góc  với AD.    Giúp mik câu c) và d) với! (các bạn cứ coi như câu a) và b) đã có sẵn trg giả thiết đi, vì mk mới giải đc 2 câu đấy thôi.) Thanks
0