b) x= 716-3 / 716+1 và y= 717-3 / 717+1
mình đag cần rất gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. $=(-25)(-4)(-35)=100(-35)=-3500$
b. $=16-10=6$
c. $=180-(-16)-(-36)=180+16+36=232$
d. $=250-200:[1(-3)^2+(-8)]$
$=250-200:(9-8)=250-200=50$
2.
$60+2(12-x)=-48$
$2(12-x)=60-(-48)=60+48=108$
$12-x=108:2=54$
$x=12-54=-42$
Bài 1:
a. $=(-25)(-4)(-35)=100(-35)=-3500$
b. $=16-10=6$
c. $180-(-16)-(-36)=180+16+36=196+36=232$
d. $=250-200:[2000.(-3).2-6]$
$=250-200:[2000.(-6)+(-6)]$
$=250-200:[(-6)(2000+1)]=250-200[(-6).2001]$
$=250+200.6.2001=250+2401200=2401450$
Bài 2:
$60+2(12-x)=-48$
$2(12-x)=-48-60=-108$
$12-x=-108:2=-54$
$x=12-(-54)=66$
a)
9 16 + 8 − 27 + 1 + 7 16 + − 19 27 = 9 16 + 8 − 27 + 1 + 7 16 + − 19 27 = 9 16 + 7 16 + − 8 27 + − 19 27 + 1 = 1 + − 1 + 1 = 1
b)
13 5 + 7 16 − 15 16 − 6 15 = 13 5 + 7 16 − 15 16 + 2 5 = 13 5 + 2 5 + 7 16 − 15 16 = 3 + − 1 2 = 5 2
a.219 - 7(x+1) = 100
7(x+1) = 219 - 100
7(x+1) = 119
x + 1 = 119 : 7
x + 1 = 17
x = 17 - 1
x = 16
b. (3x - 6 ) . 3 = 36
3x - 6 = 36 : 3
3x - 6 = 12
3x = 12 + 6
3x = 18
x = 18 : 3
x = 6
c.716 - ( x-143) = 659
x-143 = 716 - 659
x-143 = 57
x = 57 + 143
x = 200
b. 30 - [4(x-2)+15] = 3
4(x-2) + 15 = 30 - 3
4(x-2)+15 = 27
4(x-2) = 27 - 15
4(x-2) = 12
x-2 = 12 : 4
x-2 = 3
x = 2 + 3 = 5
e.[(8x - 12) : 4] .33 = 36
[(8x - 12) : 4] . 27 = 729
(8x - 12) : 4 = 729 : 27 = 27
8x - 12 = 27 . 4 = 108
8x = 108 + 12 = 120
x = 120 : 8 = 15
a) \(\Leftrightarrow7\left(x+1\right)=119\\ \Leftrightarrow x+1=17\\ \Leftrightarrow x=16\)
b) \(\Leftrightarrow9\left(x-2\right)=36\\ \Leftrightarrow x-2=4\\ \Leftrightarrow x=6\)
c) \(\Leftrightarrow x-143=57\\ \Leftrightarrow x=200\)
d) \(\Leftrightarrow4\left(x-2\right)+15=27\\ \Leftrightarrow4\left(x-2\right)=12\\ \Leftrightarrow x-2=3\\ \Leftrightarrow x=5\)
e) \(\Leftrightarrow\left(2x-3\right).4:4=3^3\\ \Leftrightarrow2x-3=27\\ \Leftrightarrow2x=24\\ \Leftrightarrow x=12\)
Ta có 13x = \(\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
13y = \(\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
Vì 1317 + 1 > 1316 + 1
=> \(\frac{1}{13^{17}+1}< \frac{1}{13^{16}+1}\)
=> \(\frac{12}{13^{17}+1}< \frac{12}{13^{16}+1}\)
=> \(1+\frac{12}{13^{17}+1}< 1+\frac{12}{13^{16}+1}\)
=> 13x < 13y
=> x < y
Vậy x < y
Trả lời:
\(x=\frac{9^{11}+2}{9^{11}+3}=\frac{9^{11}+3-1}{9^{11}+3}=\frac{9^{11}+3}{9^{11}+3}-\frac{1}{9^{11}+3}=1-\frac{1}{9^{11}+3}\)
\(y=\frac{9^{12}+2}{9^{12}+3}=\frac{9^{12}+3-1}{9^{12}+3}=\frac{9^{12}+3}{9^{12}+3}-\frac{1}{9^{12}+3}=1-\frac{1}{9^{12}+3}\)
Ta có: \(9^{11}< 9^{12}\)
\(\Leftrightarrow9^{11}+3< 9^{12}+3\)
\(\Leftrightarrow\frac{1}{9^{11}+3}>\frac{1}{9^{12}+3}\)
\(\Leftrightarrow-\frac{1}{9^{11}+3}< -\frac{1}{9^{12}+3}\)
\(\Leftrightarrow1-\frac{1}{9^{11}+3}< 1-\frac{1}{9^{12}+3}\)
\(\Leftrightarrow x< y\)
Vậy x < y
a) \(\frac{2}{-5}< \frac{x}{10}< \frac{1}{4}\)
\(\Rightarrow\frac{-8}{20}< \frac{2x}{20}< \frac{5}{20}\)
\(\Rightarrow-8< 2x< 5\)
\(\Rightarrow-4< x< 2,5\)
Vì \(x\inℤ\) nên \(x\in\left\{-3;-2;-1;0;1;2\right\}\)
b) \(-\frac{2}{3}< \frac{x}{8}< -\frac{1}{6}\)
\(\Rightarrow\frac{-16}{24}< \frac{3x}{24}< \frac{-4}{24}\)
\(\Rightarrow-16< 3x< -4\)
\(\Rightarrow3x\in\left\{-15;-12;-9;-6\right\}\)
\(\Rightarrow x\in\left\{-5;-4;-3;-2\right\}\)
Ta có: x = \(\frac{7^{16}-3}{7^{16}+1}=\frac{7^{16}+1-4}{7^{16}+1}=1-\frac{4}{7^{16}+1}\)
y = \(\frac{7^{17}-3}{7^{17}+1}=\frac{7^{17}+1-4}{7^{17}+1}=1-\frac{4}{7^{17}+1}\)
Do \(7^{16}+1< 7^{17}+1\) => \(\frac{4}{7^{16}+1}>\frac{4}{7^{17}+1}\) => \(-\frac{4}{7^{16}+1}< -\frac{4}{7^{17}+1}\)
=> \(1-\frac{4}{7^{16}+1}< 1-\frac{4}{7^{17}+1}\) => x < y
Trả lời:
\(x=\frac{7^{16}-3}{7^{16}+1}=\frac{7^{16}+1-4}{7^{16}+1}=\frac{7^{16}+1}{7^{16}+1}-\frac{4}{7^{16}+1}=1-\frac{4}{7^{16}+1}\)
\(y=\frac{7^{17}-3}{7^{17}+1}=\frac{7^{17}+1-4}{7^{17}+1}=\frac{7^{17}+1}{7^{17}+1}-\frac{4}{7^{17}+1}=1-\frac{4}{7^{17}+1}\)
Ta có: \(7^{16}< 7^{17}\)
\(\Leftrightarrow7^{16}+1< 7^{17}+1\)
\(\Leftrightarrow\frac{4}{7^{16}+1}>\frac{4}{7^{17}+1}\)
\(\Leftrightarrow-\frac{4}{7^{16}+1}< -\frac{4}{7^{17}+1}\)
\(\Leftrightarrow1-\frac{4}{7^{16}+1}< 1-\frac{4}{7^{17}+1}\)
\(\Leftrightarrow x< y\)
Vậy x < y