Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{19}=\frac{19^{17}+1}{19^{17}+19}=1-\frac{18}{19^{17}+19}\)
\(\frac{y}{19}=\frac{19^{16}+1}{19^{16}+19}=1-\frac{18}{19^{16}+19}\)
Nhận thấy 1917 + 19 > 1916 + 19
=> \(\frac{18}{19^{17}+19}< \frac{18}{19^{16}+19}\)
=> \(-\frac{18}{19^{17}+19}>-\frac{18}{19^{16}+19}\)
=> \(1-\frac{18}{19^{17}+19}>1-\frac{18}{19^{16}+19}\)
=> \(\frac{x}{19}>\frac{y}{19}\)
=> x > y
Vậy x > y
Ta có : \(\frac{x}{19}=\frac{19^{17}+1}{19^{17}+19}=1-\frac{18}{19^{17}+19}\)
\(\frac{y}{19}=\frac{19^{16}+1}{19^{16}+19}=1-\frac{18}{19^{16}+19}\)
Vì\(\frac{18}{19^{17}+19}< \frac{18}{19^{16}+19}\)\(\Rightarrow\frac{x}{19}>\frac{y}{19}\)
mà \(x,y>0\)
\(\Rightarrow x>y\)
Ta có: x = \(\frac{7^{16}-3}{7^{16}+1}=\frac{7^{16}+1-4}{7^{16}+1}=1-\frac{4}{7^{16}+1}\)
y = \(\frac{7^{17}-3}{7^{17}+1}=\frac{7^{17}+1-4}{7^{17}+1}=1-\frac{4}{7^{17}+1}\)
Do \(7^{16}+1< 7^{17}+1\) => \(\frac{4}{7^{16}+1}>\frac{4}{7^{17}+1}\) => \(-\frac{4}{7^{16}+1}< -\frac{4}{7^{17}+1}\)
=> \(1-\frac{4}{7^{16}+1}< 1-\frac{4}{7^{17}+1}\) => x < y
Trả lời:
\(x=\frac{7^{16}-3}{7^{16}+1}=\frac{7^{16}+1-4}{7^{16}+1}=\frac{7^{16}+1}{7^{16}+1}-\frac{4}{7^{16}+1}=1-\frac{4}{7^{16}+1}\)
\(y=\frac{7^{17}-3}{7^{17}+1}=\frac{7^{17}+1-4}{7^{17}+1}=\frac{7^{17}+1}{7^{17}+1}-\frac{4}{7^{17}+1}=1-\frac{4}{7^{17}+1}\)
Ta có: \(7^{16}< 7^{17}\)
\(\Leftrightarrow7^{16}+1< 7^{17}+1\)
\(\Leftrightarrow\frac{4}{7^{16}+1}>\frac{4}{7^{17}+1}\)
\(\Leftrightarrow-\frac{4}{7^{16}+1}< -\frac{4}{7^{17}+1}\)
\(\Leftrightarrow1-\frac{4}{7^{16}+1}< 1-\frac{4}{7^{17}+1}\)
\(\Leftrightarrow x< y\)
Vậy x < y
\(\left(-32\right)^9=-\left(2^5\right)^9=-\left(2^{45}\right)\)
\(\left(-16\right)^{13}=-\left(2^4\right)^{13}=-\left(2^{52}\right)\)
vì -2^45>-2^52hay -16^13>-32^9
ta có: 3213 = ( 25)13 = 265
1617 = (24)17 = 268
=> 265 < 268 => 3213 < 1617
Toán 6 ?
Ta có :
\(\left(-\frac{1}{16}\right)^{100}=\left(\frac{1}{16}\right)^{100}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\left(\frac{1}{2}\right)^{500}=\frac{1}{2^{500}}=\frac{1}{\left(2^4\right)^{125}}=\frac{1}{16^{125}}\)
Do \(\frac{1}{16^{100}}>\frac{1}{16^{125}}\left(16^{100}< 16^{125}\right)\)
\(\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{.2}\right)^{500}\)
Vậy ...
a) \(\left(-\frac{1}{2}\right)^{500}=\left[\left(-\frac{1}{2}^5\right)^{100}\right]=\left(\frac{-1}{32}\right)^{100}\)
Vì \(\left(-\frac{1}{16}\right)^{100}\) > \(\left(\frac{-1}{32}\right)^{100}\) nên \(\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
b) Câu này mk ko bt
Bạn thông cảm
Ta có 13x = \(\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
13y = \(\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
Vì 1317 + 1 > 1316 + 1
=> \(\frac{1}{13^{17}+1}< \frac{1}{13^{16}+1}\)
=> \(\frac{12}{13^{17}+1}< \frac{12}{13^{16}+1}\)
=> \(1+\frac{12}{13^{17}+1}< 1+\frac{12}{13^{16}+1}\)
=> 13x < 13y
=> x < y
Vậy x < y