a,x^4-7x^3+14x^2-7x+1
b,x^4-8x+63
c,(x+1)^4+(x^2+x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
\(=\left(x+1\right)^4+x^4+x^2+1+2x^3+2x^2+2x\)
\(=\left(x+1\right)^4+x^4+3x^2+1+2x^3+2x\)
a) \(x^4-7x^3+14x^2-7x+1\)(1)
Giả sử x khác 0, khi đó :
\(\left(1\right)\Leftrightarrow x^2\left(x^2-7x+14-\dfrac{7}{x}+\dfrac{1}{x^2}\right)\)
\(\Leftrightarrow x^2\left[\left(x^2+\dfrac{1}{x^2}\right)-7\left(x+\dfrac{1}{x}\right)+14\right]\)
\(\Leftrightarrow x^2\left[\left(x^2+2\cdot x\cdot\dfrac{1}{x}+\dfrac{2}{x^2}\right)-2-7\left(x+\dfrac{1}{x}\right)+14\right]\)
\(\Leftrightarrow x^2\left[\left(x+\dfrac{1}{x}\right)^2-7\left(x+\dfrac{1}{x}\right)+12\right]\)
Đặt \(x+\dfrac{1}{x}=a\)
pt \(\Leftrightarrow x^2\left(a^2-7a+12\right)\)
\(\Leftrightarrow x^2\left(a^2-3a-4a+12\right)\)
\(\Leftrightarrow x^2\left[a\left(a-3\right)-4\left(a-3\right)\right]\)
\(\Leftrightarrow x^2\left(a-3\right)\left(a-4\right)\)
\(\Leftrightarrow x^2\left(x+\dfrac{1}{x}-3\right)\left(x+\dfrac{1}{x}-4\right)\)
Dùng phương pháp hệ số bất định:
a,4x4+4x3+5x2+2x+1
b,x4-7x3+14x2-7x+1
c,x4-8x+63
d,(x+1)4+(x2+x+1)2
a: \(=2x^3+x^2-2x^2-x+6x+3\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b: \(=x^3+x^2+4x^2+4x+4x+4\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
c: \(=\left(x^2+7x+12\right)\left(x^2+7x+10\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)