K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

a, Để A nguyên thì 

n-5 chia hét cho n+1

=> n+1-6 chia hết cho n+1

Vì n+1 chia hết cho n+1

=> -6 chia hết cho n+1

=> n+1 thuộc Ư(-6)

n+1n
10
-1-2
21
-2-3
32
-3-4
65
-6-7  

KL: n thuộc..............................

b, Gọi ƯCLN(n-5; n+!) là d. Ta có:

n-5 chia hết cho d

n+1 chia hết cho d

=> n+1-n-5 chia hết cho d

=> 6 chia hết cho d

=> d thuộc Ư(6)
Giả sử phân số rút gọn được

=> n+1 chia hết cho 6

=> n+1 thuộc B(6)

=> n+1 = 6k

=> n = 6k-1

Vậy đâe phân số trên tối giản thì n \(\ne\) 6k-1

a) Để A có giá trị nguyên thì \(n-5⋮n+1\)

\(\Leftrightarrow n+1-6⋮n+1\)

mà \(n+1⋮n+1\)

nên \(-6⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(-6\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b)

Ta có: \(A=\dfrac{n-5}{n+1}\)

\(=\dfrac{n+1-6}{n+1}\)

\(=1-\dfrac{6}{n+1}\)

Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1

\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)

\(\Leftrightarrow n+1⋮̸6\)

\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)

\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)

Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản

a) Để A là số nguyên thì \(n+2⋮n+1\)

\(\Leftrightarrow n+1+1⋮n+1\)

mà \(n+1⋮n+1\)

nên \(1⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(1\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)(thỏa ĐK)

Vậy: \(n\in\left\{0;-2\right\}\)

b) Gọi d\(\in\)ƯC(n+2;n+1)

\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮d\\n+1⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(n+2;n+1\right)=1\)

hay A là phân số tối giản(Đpcm)

8 tháng 4 2021

thanks nha  ok

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

11 tháng 5 2022

a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

 

11 tháng 5 2022

a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)

\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)

\(A=\dfrac{n+1}{n-3}\)

\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)

\(A=1+\dfrac{4}{n-3}\)

Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-3=1 --> n=4

n-3=-1 --> n=2

n-3=2 --> n=5

n-3=-2 --> n=1

n-3=4 --> n=7

n-3=-4 --> n=-1

Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên

b.hemm bt lèm:vv

b: Để A là số nguyên thì 5n-9 chia hết cho 2n+4

=>10n-18 chia hét cho 2n+4

=>10n+20-38 chia hết cho 2n+4

=>\(2n+4\in\left\{1;-1;2;-2;19;-19;38;-38\right\}\)

=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;\dfrac{15}{2};-\dfrac{23}{2};17;-21\right\}\)

8 tháng 5 2021
A. B C Nhé chứ ko liền nhau