Cho tam giác ABC cân tại A, đường cao thuộc cạnh bên bằng h, góc đáy bằng \(\alpha\). Chứng minh:
\(S_{ABC}=\frac{h^2}{4.\sin\alpha.\cos\alpha}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không có bút ở đây nên gợi ý cho bạn xíu xíu nhé.
Lấy M đối xứng với C qua A => MC = 2 AC = 2 AB
=> MBA vuông tại B
Kẻ BH vuông góc AC tại H => BH = h
Ta có sin a . cos a = BH . HC / BC^2 = h . HC / BC^2
=> h^2 / 4 sin a cos a = h.BC^2 / 4HC
Ta phải chứng minh S ABC = h^2 / 4 sin a cos a
<=> BH .AC /2 = h.BC^2 / 4HC
<=> 2 AC .HC= BC^2
<=> CM . HC = BC^2 (hệ thức lượng)
a: sin a=sin C=AB/BC
cos a=AC/BC=b/a
sin 2a=2sinacosa\(=2\cdot\dfrac{b}{a}\cdot\dfrac{AB}{BC}=\dfrac{2b\cdot AB}{a^2}\)
b: \(sin2a=sin\left(a+a\right)\)
\(=sina\cdot cosa+sina\cdot cosa\)
\(=2\cdot sina\cdot cosa\)
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=25\)
Áp dụng HTL: \(BH=\dfrac{AB^2}{BC}=9\)
b, \(\sin\alpha+\cos\alpha=1,4\Leftrightarrow\left(\sin\alpha+\cos\alpha\right)^2=1,96\)
\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha=1,96\\ \Leftrightarrow\sin\alpha\cdot\cos\alpha=\dfrac{1,96-1}{2}=\dfrac{0,96}{2}=0,48\)
\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha\cdot\cos^2\alpha\\ =1^2+2\left(\sin\alpha\cdot\cos\alpha\right)^2=1+2\cdot\left(0,48\right)^2=1,4608\)
Gọi \(h_a;h_b\)là đường cao ứng với cạnh BC và AC.
\(\frac{h_b^2}{\sin\alpha.\cos\alpha}=\frac{\left(\frac{h_b}{\sin\alpha}\right)^2}{\frac{\cos\alpha}{\sin\alpha}}=\frac{\left(\frac{BC\sin\alpha}{\sin\alpha}\right)^2}{\cot\alpha}=\frac{BC}{\cot\alpha}.BC=\frac{2h_a\cot\alpha}{\cot\alpha}.BC\)
\(=2h_a.BC=4.\frac{1}{2}h_a.BC=4S_{ABC}\)