cho tam giác ABC cân tại A có I là trung điểm của BC. Gọi M là điểm bất kì trên AI, BM và CM lần cắt nhau AC và AB tại E và D
a, Chứng minh: Tứ giác BDEC là hình thang cân
b, Xác định vị trí của điểm M trên AI để BD=DE=EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
hay BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
a) ADME là hình chữ nhật vì có 3 góc vuông: \(\widehat{A}\)= \(\widehat{D}\)= \(\widehat{E}\)= 900
b) Để ADME là hình vuông thì AM là phân giác \(\widehat{A}\)
Vậy M là giao đường phân giác góc A với BC thì ADME là hình vuông
a)Vì I là trung điểm của BC
\(\Rightarrow\)AI là trung tuyến của \(\Delta ABC\)cân tại A
\(\Rightarrow AI\)là phân giác của \(\Delta ABC\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)
Vì \(\Delta ABC\)cân tại A \(\Rightarrow AB=AC\)
Xét \(\Delta BAM\)và \(\Delta CAM\),có:
\(\hept{\begin{cases}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AM:chung\end{cases}}\)
\(\Rightarrow\Delta BAM=\Delta CAM\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{ACM}\)(2 góc tương ứng)
Xét \(\Delta ABE\)và \(\Delta ACD\),có:
\(\hept{\begin{cases}\widehat{ABM}=\widehat{ACM}\\AB=AC\\\widehat{BAC}:chung\end{cases}}\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(g.c.g\right)\)
\(\Rightarrow AE=AD\)(2 cạnh tương ứng)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{BAC}}{2}\)
mà \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\)
Mặt khác : \(\widehat{ADE}\)và \(\widehat{ABC}\)là 2 góc ở vị trí đồng vị
\(\Rightarrow DE//BC\)
\(\Rightarrow BDEC\)là hình thang
Ta có : \(\widehat{ABC}=\widehat{ACB}\)(do \(\Delta ABC\)cân tại A)
\(\Rightarrow BDEC\)là hình thang cân
b)Vì BDEC là hình thang cân \(\Rightarrow BD=CE\)
Ta có :BD=CE \(\Leftrightarrow\Delta BDE\)cân tại B
\(\Leftrightarrow\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(do DE//BC)
\(\Leftrightarrow\widehat{DBE}=\widehat{EBC}\)
\(\Leftrightarrow BE\)là phân giác của \(\widehat{ABC}\)
hay \(BM\)là phân giác của \(\widehat{ABC}\)
Vậy khi M là 1 điểm nằm trên AI sao cho BM là phân giác của \(\widehat{ABC}\)thì BD=DE=CE