K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
4 tháng 7 2021

Thực hiện phép chia \(x^4+mx^3+n\)cho \(x^2-1\)ta được: 

\(x^4+mx^3+n=\left(x^2-1\right)\left(x^2+mx+1\right)+mx+n+1\)

Để \(x^4+mx^3+n\)chia hết cho \(x^2-1\)thì \(mx+n+1=0\)vói mọi \(x\).

Suy ra \(\hept{\begin{cases}m=0\\n+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=0\\n=-1\end{cases}}\).

8 tháng 8 2023

a, Ta có : \(\text{n + 5 = (n - 1)+6}\)

Vì \(\text{(n-1) ⋮ n-1}\)

Nên để \(\text{n+5 ⋮ n-1}\) `n-1`

Thì \(\text{6 ⋮ n-1}\) 

\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)

\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)

\(\text{________________________________________________________}\)

b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)

Vì \(\text{2(n+2) ⋮ n+2}\)

Nên để \(\text{2n-4 ⋮ n+2}\)

Thì \(\text{8 ⋮ n+2}\)

\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)

\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )

\(\text{_________________________________________________________________ }\)

c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)

Vì \(\text{3(2n+1) ⋮ 2n+1}\)

Nên để\(\text{ 6n+4 ⋮ 2n+1}\)

Thì \(\text{1 ⋮ 2n+1}\)

\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)

\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)

\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )

\(\text{_______________________________________}\)

Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)

Vì \(\text{-2(n+1) ⋮ n+1}\)

Nên để \(\text{3-2n ⋮ n+1}\)

Thì\(\text{ 5 ⋮ n + 1}\)

\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )

 

19 tháng 10 2017

1) 5 chia hết cho n+1

Suy ra n+1 thuộc Ư(5) bằng {1;5}

n+1 bằng 1 suy ra n bằng 0

n+1 bằng 5 suy ra n bằng 4

Vậy n thuộc {0;4}

2) 7 chia hết cho n+2 

Suy ra n+2 thuộc Ư(7) bằng {1;7}

n+2 bằng 1 (loại)

n+2 bằng 7 suy ra n bằng 5

Vậy n bằng 5.

19 tháng 10 2017

1, \(5⋮n+1\)

\(\Rightarrow n+1\inư\left(5\right)\in\left\{1,5\right\}\)

Ta có bảng:

n+115
n04

Vậy n = 0,4

2, \(7⋮n+2\)

\(\Rightarrow n+2\inư\left(7\right)\in\left\{1,7\right\}\)

Ta có bảng:

n+217
n/5

Vây n = 5

30 tháng 4 2018

5 + n2 - 2n \(⋮\)n - 2

=> 5 + n . n - 2 . n \(⋮\)n - 2

=> 5 + n . ( n - 2 ) \(⋮\)n - 2

=> 5 \(⋮\)n - 2 vì n . ( n - 2 ) đã chia hết cho n - 2

=> n - 2 \(\in\)Ư ( 5 ) = { 1 ; -1 ; 5 ; -5 }

Với n - 2 = 1 => n = 3

Với n - 2 = -1 => n = 1

Với n - 2 = 5 => n = 7 

Với n - 2 = -5 => n = -3

Vậy : n \(\in\){ 3 ; 1 ; 7 ; -3 }

30 tháng 4 2018

Để  \(5+n^2-2n⋮n-2\)

\(\Leftrightarrow5+n.\left(n-2\right)⋮n-2\)

\(\Leftrightarrow5⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(5\right)\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

\(\Leftrightarrow n\in\left\{3;1;7;-3\right\}\)

Chúc bạn học tốt !!!! 

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

3 tháng 10 2017

BÀI 1 

STN nhỏ nhất  : 33

STN nhỏ nhất có 3 chữ số : 102

3 tháng 10 2017

cach lam nhu nao ban oi

22 tháng 5 2021

Ta có:
`Delta`
`=m^2+12>=12>0`
`=>` pt có 2 nghiệm phân biệt `AAm`
Cách dễ hơn:
`ac=-3=>b^2-4ac>0`
`=>` pt có 2 nghiệm phân biệt `AAm`