tìm m,n để x^4+mx^3+n chia hết x^2-1 GIUP MIK VS MIK ĐANG CAN GẤP!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
1) 5 chia hết cho n+1
Suy ra n+1 thuộc Ư(5) bằng {1;5}
n+1 bằng 1 suy ra n bằng 0
n+1 bằng 5 suy ra n bằng 4
Vậy n thuộc {0;4}
2) 7 chia hết cho n+2
Suy ra n+2 thuộc Ư(7) bằng {1;7}
n+2 bằng 1 (loại)
n+2 bằng 7 suy ra n bằng 5
Vậy n bằng 5.
5 + n2 - 2n \(⋮\)n - 2
=> 5 + n . n - 2 . n \(⋮\)n - 2
=> 5 + n . ( n - 2 ) \(⋮\)n - 2
=> 5 \(⋮\)n - 2 vì n . ( n - 2 ) đã chia hết cho n - 2
=> n - 2 \(\in\)Ư ( 5 ) = { 1 ; -1 ; 5 ; -5 }
Với n - 2 = 1 => n = 3
Với n - 2 = -1 => n = 1
Với n - 2 = 5 => n = 7
Với n - 2 = -5 => n = -3
Vậy : n \(\in\){ 3 ; 1 ; 7 ; -3 }
Để \(5+n^2-2n⋮n-2\)
\(\Leftrightarrow5+n.\left(n-2\right)⋮n-2\)
\(\Leftrightarrow5⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(5\right)\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow n\in\left\{3;1;7;-3\right\}\)
Chúc bạn học tốt !!!!
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
Ta có:
`Delta`
`=m^2+12>=12>0`
`=>` pt có 2 nghiệm phân biệt `AAm`
Cách dễ hơn:
`ac=-3=>b^2-4ac>0`
`=>` pt có 2 nghiệm phân biệt `AAm`
Thực hiện phép chia \(x^4+mx^3+n\)cho \(x^2-1\)ta được:
\(x^4+mx^3+n=\left(x^2-1\right)\left(x^2+mx+1\right)+mx+n+1\)
Để \(x^4+mx^3+n\)chia hết cho \(x^2-1\)thì \(mx+n+1=0\)vói mọi \(x\).
Suy ra \(\hept{\begin{cases}m=0\\n+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=0\\n=-1\end{cases}}\).