K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
4 tháng 7 2021

Thực hiện phép chia \(x^4+mx^3+n\)cho \(x^2-1\)ta được: 

\(x^4+mx^3+n=\left(x^2-1\right)\left(x^2+mx+1\right)+mx+n+1\)

Để \(x^4+mx^3+n\)chia hết cho \(x^2-1\)thì \(mx+n+1=0\)vói mọi \(x\).

Suy ra \(\hept{\begin{cases}m=0\\n+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=0\\n=-1\end{cases}}\).

10 tháng 12 2018

bạn làm phép tính chia rồi cho số dư = 0 xem thử đi

1 tháng 11 2018

Đặt \(f\left(x\right)=x^3-2x^2-6x+a\)

Gọi thương của \(f\left(x\right):\left(x-2\right)\)là \(P\left(x\right)\)

\(\Rightarrow f\left(x\right)=P\left(x\right).\left(x-2\right)\)

Thay \(x=2\)ta có: 

\(8-8-12+a=0\)

\(\Rightarrow a=12\)

Vậy \(a=2\)là giá trị cần tìm

9 tháng 7 2018

\(B=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)

\(=3n-3-2n^2+2n-n^2-5n\)

\(=5n-3-3n^2-5n\)

\(=-3-3n^2\)

\(=-3\left(n^2+1\right)\) chia hết cho 3 nếu \(n\in Z\)

Nếu \(n\in Q\) thì sai đề

9 tháng 7 2018

cảm ơn bảo bình nhìu nha

16 tháng 11 2019

1) 

Nếu x>1 thì x^2>1; y^2;z^2 cx lớn=1

=> x^2+y^2+z^2>1=> Loại

Nếu x<-1=> x^2>1; y^2;z^2 cx lớn=1

=> x^2+y^2+z^2>1=> Loại

CMTT vs y,z thì -1<=x,y,z<=1

TH1: -1<=x<0

=> x<x^2 do x âm và x^2 dương

CMTT => y<y^2; z<z^2

=> x+y+z<x^2+y^2+z^2

Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2

=> LOẠI.

TH2: 0<=x,y,z<=1

=> x>=x^2; y>=y^2; z>=z^2

=> x+y+z>=x^2+y^2+z^2

Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2

=> ''='' xảy ra <=> x=0 hoặc 1; y=0 hoặc 1; z=0 hoặc 1

=> (x,y,z)=(0;0;1) và các hoán vị

=> A=1.

17 tháng 12 2017

Xin lỗi ,

mik 

mới 

hok

lớp 6

27 tháng 10 2019

k biết thì đừng trả lời

25 tháng 10 2016

help me! 

30 tháng 10 2016

Tìm m để

a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)

b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)