K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ H, kẻ đường thẳng song song với DC cắt AB tại I

Xét ΔBDC có 

H là trung điểm của BC(gt)

HI//CD(gt)

Do đó: I là trung điểm của BD(Định lí 1 về đường trung bình của tam giác)

Xét ΔAHI có 

M là trung điểm của AH(gt)

MD//IH(gt)

Do đó: D là trung điểm của AI(Định lí 1 về đường trung bình của tam giác)

Ta có: D là trung điểm của AI(cmt)

nên AD=DI

Ta có: I là trung điểm của BD(cmt)

nên ID=BI

Ta có: AD+DI+BI=AB

nên 3AD=AB

hay \(AD=\dfrac{1}{3}AB\)

Ta có: AD+BD=AB(D nằm giữa A và B)

nên \(BD=AB-AD=AB-\dfrac{1}{3}AB=\dfrac{2}{3}AB\)

Ta có: \(\dfrac{BD}{AD}=\dfrac{2\cdot AB}{3}:\dfrac{1\cdot AB}{3}\)

\(\Leftrightarrow\dfrac{BD}{AD}=\dfrac{2\cdot AB}{AB}=2\)

nên BD=2AD

Gọi K là trung điểm của BD

Xét ΔBDC có 

K là trung điểm của BD

H là trung điểm của BC

Do đó: KH là đường trung bình của ΔBDC

Suy ra: KH//DC 

hay KH//DM

Xét ΔAKH có 

M là trung điểm của AH

MD//KH

Do đó: D là trung điểm của AK

Suy ra: AD=DK

mà DK=KB

nên AD=DK=KB

\(\Leftrightarrow AD=\dfrac{DK+KB}{2}=\dfrac{BD}{2}\)

hay BD=2AD

4 tháng 7 2021

a,

\(\Delta ABC\) cân tại A có AH là đường cao nên đồng thời là trung trực

\(=>BH=HC\)

mà N là trung điểm BD\(=>BN=ND\)

=>\(HN\) là đường trung bình \(\Delta BCD\)\(=>HN//DC\)

b,từ ý a \(=>DM//HN\) mà M là trung điểm AH

=>AD=DN

mà DN=BN=>AD=DN=BN

mà AD+DN+BN=AB\(=>AD=\dfrac{1}{3}AB\)

a: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh đáy BC

nên H là trung điểm của CB

Xét ΔBDC có

H là trung điểm của BC

N là trung điểm của BD

Do đó: HN là đường trung bình của ΔBDC

Suy ra: HN//DC và \(HN=\dfrac{DC}{2}\)

b: Xét ΔANH có

M là trung điểm của AH

MD//NH

Do đó: D là trung điểm của AN

Suy ra: AD=DN

mà DN=NB

nên AD=DN=NB

Suy ra: \(AD=\dfrac{AD+DN+NB}{3}=\dfrac{AB}{3}\)

31 tháng 8 2017

Giải

Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\)   là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì 

\(MI=KN=\frac{DE}{2}\left(1\right)\)

\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)

\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)

\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)

12 tháng 9 2017

[​IMG]
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha

Bài 1: 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường trung tuyến

Xét ΔABC có

AH là đường trung tuyến

BD là đường trung tuyến

AH cắt BD tại E

Do đó: E là trọng tâm của ΔABC

a) Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(gt)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: BN=CM(hai cạnh tương ứng)

b) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

AH chung

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH⊥BC(đpcm)

c) Ta có: AH⊥BC(cmt)

mà H là trung điểm của BC(gt)

nên AH là đường trung trực của BC

⇔EH là đường trung trực của BC

⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)

Xét ΔEBC có EB=EC(cmt)

nên ΔEBC cân tại E(Định nghĩa tam giác cân)

20 tháng 2 2021

Cảm ơn ạ =))

a: Xét ΔBEC có 

I là trung điểm của BE

M là trung điểm của BC

Do đó: IM là đường trung bình của ΔBEC

Suy ra: \(IM=\dfrac{EC}{2}\left(1\right)\)

Xét ΔDCB có 

K là trung điểm của DC

M là trung điểm của BC

Do đó: KM là đường trung bình của ΔDCB

Suy ra: \(KM=\dfrac{BD}{2}\)

mà BD=CE

nên \(KM=\dfrac{CE}{2}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra IM=KM