Giải bpt sau:
\(\dfrac{x-1}{4-x}\text{≥}0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(\frac{1}{x(x+1)}< 0\Leftrightarrow x(x+1)< 0\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>0\\ x+1< 0\end{matrix}\right.\\ \left\{\begin{matrix} x< 0\\ x+1>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 0< x< -1(\text{vô lý})\\ 0> x> -1\end{matrix}\right.\)
\(\Rightarrow 0> x> -1\)
Cách khác:
\(\dfrac{1}{x\left(x+1\right)}< 0\Leftrightarrow x\left(x+1\right)< 0\)
Ta có:
\(x-\left(x+1\right)=x-x-1=-1< 0\)
\(\Rightarrow x< x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x>-1\end{matrix}\right.\)
\(\Rightarrow-1< 0< x\)
Bạn kia sai rồi tớ sửa lại cho :
a) ( 2x - 4)( x + 3) > 0
Lập bảng xét dấu :
Vậy , nghiệm của BPT : x < -3 hoặc : x > 2
b) Lập bảng xét dấu :
Vậy , x < -3 hoặc x >1
a: =>\(\dfrac{x^2+2x-13-x+1}{x-1}< 0\)
=>\(\dfrac{x^2+x-12}{x-1}< 0\)
=>\(\dfrac{\left(x+4\right)\left(x-3\right)}{x-1}< 0\)
=>1<x<3 hoặc x<-4
b: =>\(\dfrac{3x^2+4x-3x-4}{x-1}< 3\)
=>3x+4<3
=>3x<-1
=>x<-1/3
c: TH1: 2x^2-3x+1>0 và x+2>0
=>(2x-1)(x-1)>0 và x+2>0
=>x>1
TH2: (2x-1)(x-1)<0 và x+2<0
=>x<-2 và 1/2<x<1
=>Loại
a: =>4x+12<=2x-1
=>2x<=-13
=>x<=-13/2
b: =>x^2-2x+1+4<0
=>(x-1)^2+4<0(loại)
c: =>(x-2+x+3)/(x+3)<0
=>(2x+1)/(x+3)<0
=>-3<x<-1/2
a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)
Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu
mà 1>0
=>x + 2 > 0 <=> x > 2
\(\Rightarrow S=\left\{x|x>2\right\}\)
b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)
Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu
mà \(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)
\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)
c. Ta có bảng xét dấu:
x | -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\) |
x+1 | - 0 + + |
2x+1 | - - 0 + |
\(\dfrac{2x+1}{x+1}\) | + \(//\) - 0 + |
\(bpt\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\4-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\4-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge1\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le1\\x>4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1\le x< 4\)
Vậy .......
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\4-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\4-x< 0\end{matrix}\right.\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge1\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le1\\x>4\end{matrix}\right.\end{matrix}\right.\)
Vậy....