A = 1/3+1/6+1/10+1/15+....+1/105, B=4/5 .so sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân 2 vế với 1/2 ta có
1/2 x A = 1/2 x (1/3 + 1/6 +1/10 + 1/15 + .......+1/91 + 1/105 )
1/2 x A = 1/6 +1/12 + 1/20 + 1/30 + ...............+1/182 + 1/210
1/2 x A = 1/(2x3) + 1/(3x4) + 1/(4x5) + 1/(5x6) +................+1/(13x14) + 1/(14x15)
1/2 x A = 1/2 - 1/3 +1/3 -1/4 + 1/4 - 1/5 +1/5 - 1/6+.........+1/13 - 1/14 + 1/14 - 1/15
1/2 x A = 1/2 - 1/15 =13/30
=> A = 13/30 : 1/2=13/15 <1
Bài 6:
a: \(15=\sqrt{225}>\sqrt{200}\)
b: \(27=9\sqrt{9}>9\sqrt{5}\)
c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)
Bài làm:
Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left[\left(1+\frac{1}{3}+...+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]-\left[\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)=B\)
Vậy A = B
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20}\)
\(=>A=\frac{1\cdot2+4\cdot1\cdot2+9\cdot1\cdot2+16\cdot1\cdot2+25\cdot1\cdot2}{3\cdot4+4\cdot3\cdot4+9\cdot3\cdot4+16\cdot3\cdot4+25\cdot3\cdot4}\)
\(=>A=\frac{\left(1+4+9+16+25\right)\cdot1\cdot2}{\left(1+4+9+16+25\right)\cdot3\cdot4}=\frac{1}{6}=\frac{111111}{666666}\)
Mà \(\frac{111111}{666666}< \frac{111111}{666665}\)
\(=>A< B\)
Vì \(\frac{1}{33}>\frac{1}{34}>\frac{1}{35}>\frac{1}{36}\)
\(\Rightarrow M>\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}\)\(\)
\(\Rightarrow M>\frac{4}{36}=\frac{1}{9}\)
Mà \(\frac{1}{9}>\frac{1}{10}\)
\(\Rightarrow\)\(M>\frac{1}{9}>\frac{1}{10}\)
Vậy : M > N
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{105}\)
\(=2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{210}\right)\)
\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{14\times15}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{14}-\frac{1}{15}\right)\)
\(=2\times\left(1-\frac{1}{15}\right)\)
\(=2\times\left(\frac{15}{15}-\frac{1}{15}\right)\)
\(=2\times\frac{14}{15}\)
\(=\frac{28}{15}\)
Ta có: \(B=\frac{4}{5}=\frac{4\times7}{5\times7}=\frac{28}{35}< \frac{28}{15}\) nên \(A>B\)