-3\x^2-5x+4 + -3\x^2-11x+28 + -3\x^2-17x+70 = 9\14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải Phương Trình Sau (Nhớ ghi cách làm nha mình k đúng cho)
a) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)
<=> 6x2 - x - 2 = 10x2 - 11x - 8
<=> 6x2 - 10x2 - x + 11x -2 + 8 = 0
<=> -4x2 + 10x + 6 = 0
<=> -2 (2x2 - 5x - 3) = 0
<=> 2x2 - 5x - 3 = 0
<=> 2x2 - 6x + x - 3 = 0
<=> x (2x + 1) - 3 (2x + 1) = 0
<=> (x - 3) (2x + 1) = 0
* x - 3 = 0 => x = 3
* 2x + 1 = 0 => x = -1/2
S = {-1/2; 3}
b) 4x2 – 1 = (2x +1)(3x -5)
<=> 4x2 – 1 - (2x +1)(3x -5) = 0
<=> (2x - 1) (2x + 1) - (2x + 1)(3x - 5) = 0
<=> (2x + 1) (2x - 1 - 3x + 5) = 0
<=> (2x + 1) (-x + 4) = 0
* 2x + 1 = 0 <=> x = -1/2
* -x + 4 = 0 <=> x = 4
S = {-1/2; 4}
c) (x + 1)2 = 4(x2 – 2x + 1)
<=> (x + 1)2 - 4(x2 – 2x + 1) = 0
<=> (x + 1)2 - 4(x2 – 1)2 = 0
* (x + 1)2 = 0 <=> x = -1
* 4(x2 - 1)2 = 0 <=> x = 1 và x = -1
S = {-1; 1}
d) 2x3 + 5x2 – 3x = 0
<=> x (2x2 + 5x - 3) = 0
<=> x (2x2 + 6x - x - 3) = 0
<=> x [x(2x - 1) + 3 (2x - 1)] = 0
<=> x (2x - 1) (x + 3) = 0
* x = 0
* 2x - 1 = 0 <=> x = 1/2
* x + 3 = 0 <=> x = -3
S = { -3; 0; 1/2}
\(\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}=\frac{3}{4x-2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+10\right)}=\frac{3}{4x-2}\)
\(\Leftrightarrow3x^2+21x+36=0\)
\(\Leftrightarrow x=-3\)
a)
\(\dfrac{1}{x+1}+\dfrac{2}{x^3-x^2-x+1}+\dfrac{3}{x^2-1}=0\) (\(x\ne\pm1\))
\(\Rightarrow\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)^2}+\dfrac{2}{\left(x+1\right)\left(x-1\right)^2}+\dfrac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=0\)
\(\Rightarrow\dfrac{x^2-2x+1+2+3x-3}{\left(x+1\right)\left(x-1\right)^2}=0\)
\(\Rightarrow\dfrac{x^2+x-2}{\left(x+1\right)\left(x-1\right)^2}=0\)
\(\Rightarrow x^2-x+2=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)=0\)
=> Th1 :
x- 1 =0
=> x = 1 ( hư cấu vì không thỏa mãn ĐK )
Th2 :
x+2 = 0
=> x = -2 ( hợp lí )
Vậy nghiệm của phương trình là x = -2
pt đã cho có dạng \(\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+10\right)}=\frac{4}{13}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+10}=\frac{4}{13}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+10}=\frac{4}{13}\Leftrightarrow....\)
bạn tuấn mình thấy vậy nè
Gỉa sử cho x=1 ta thấy \(\frac{1}{1\times4}\ne\frac{1}{1}-\frac{1}{4}\)
Bạn bấm máy tính thử xem dấu bằng chỉ áp dụng với 2 số tự nhiên liên tiếp thôi còn cái này cách 3 lận
giải thích giúp mình với
ta có x2+5x+4
=x2+x+4x+4
=(x2+x)+(4x+4)
=x(x+1)+4(x+1)
=(x+1)(x+4)
tương tự ta đc
x2+11x+28=(x+4)(x+7)
x2+17x+70=(x+7)(x+10)
x2+23x+130=(x+10)(x+13)
=>\(\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}+\dfrac{1}{\left(x+10\right)\left(x+13\right)}=\dfrac{4}{13}\)\(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}+\dfrac{3}{\left(x+10\right)\left(x+11\right)}=\dfrac{4}{13}\)=>\(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}+....+\dfrac{1}{x+13}=\dfrac{4}{13}\)
=>\(\dfrac{1}{x+1}-\dfrac{1}{x+13}=\dfrac{4}{13}\)
=>\(\dfrac{13\left(x+13\right)}{13\left(x+1\right)\left(x+13\right)}-\dfrac{13\left(x+1\right)}{13\left(x+1\right)\left(x+13\right)}=\dfrac{4\left(x+1\right)\left(x+13\right)}{13\left(x+1\right)\left(x+13\right)}\)
=> 13(x+13)-13(x+1)=4(x+1)(x+13)
=> 13[(x+13)-(x+1)]=(4x+4)(x+13)
=>13(x+13-x-1)=4x2+52x+4x+52
=13.12=4x2+56x+52
=>4x2+56x+52=156
=>4x2+56x-104=0
bài 1+2: phân tích mẫu thành nhân tử r` áp dụng
1/ab=1/a-1/b
bài 3+4: quy đồng rút gọn blah...
1: \(\dfrac{2x^3+11x^2+18x-3}{2x+3}\)
\(=\dfrac{2x^3+3x^2+8x^2+12x+6x+9-12}{2x+3}\)
\(=x^2+4x+3-\dfrac{12}{2x+3}\)