1/1x2 + 1/2x3 + 1/3x4 + ...+1/999x1000
tính tổng giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=1.2+2.3+3.4+...+x.\left(x-1\right)\)
\(\Rightarrow3C=1.2.3+2.3.3+3.4.3+...+x.\left(x-1\right).3\)
\(\Rightarrow3C=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+x.\left(x-1\right).\left[\left(x+1\right)-\left(x-2\right)\right]\)
\(\Rightarrow3C=\left(1.2.3-0.12\right)+\left(2.3.4-1.2.3\right)+\left(3.4.5-2.3.4\right)+...+\left[x.\left(x-1\right)\left(x+1\right)-x.\left(x-1\right)\left(x-2\right)\right]\)
\(\Rightarrow3C=-0.1.2+x.\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow3C=x.\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow C=\dfrac{x.\left(x-1\right)\left(x+1\right)}{3}\)
3C=1x2x3+2x3x3+3x4x3+...+Xx(X+1)=
=1x2x3+2x3x(4-1)+3x4x(5-2)+...+Xx(X+1)[(X+2)-(X-1)]=
=1x2x3-1x2x3+2x3x4-2x3x4+3x4x5-...-(X-1)xXx(X+1)+Xx(X+1)x(X+2)=
=Xx(X+1)(X+2)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(S=1-\frac{1}{2018}\)
\(S=\frac{2018}{2018}-\frac{1}{2018}\)
\(S=\frac{2017}{2018}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}.\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}=\frac{2017}{2018}\)
`x/(x+1)=1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/(31xx32)`
`=>x/(x+1)=1-1/2+1/2-1/3+1/3-1/4+...+1/31-1/32`
`=>x/(x+1)=1-1/32`
`=>x/(x+1)=31/32`
`=>32x=31(x+1)`
`=>32x=31x+31`
`=>32x-31x=31`
`=>x=31`
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}\)
\(=\frac{2010}{2011}\)
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2010-1/2011
= 1 - 1/2011
= 2010/ 2011
Đáp số: 2010/2011
Chúy ý công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(\frac{1}{1x2}+\frac{1}{1x3}+...+\frac{1}{999x1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
1/1x2+1/2x3+1/3x4+...+1/999x1000
=1-1/2+1/2-1/3+1/3-1/4+...+1/999-1/1000
=1-1/1000
=1000/1000-1/1000
=999/1000