K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

Ta có:B=\(\frac{2x-5}{x}\)=2-\(\frac{5}{x}\)

Để B nguyên thì \(\frac{5}{x}\)cũng nguyên

\(\Rightarrow\)5 chia hết cho x hay x\(\in\)Ư(5)={-1;1;-5;5}

Ta có bảng sau:

x-11-55
B-7-331

Vậy đẻ B có giá trị nhỏ nhất thì x=-1

 

23 tháng 2 2018

bt nào vậy bạn

23 tháng 2 2018

biểu thức M=2x-5/x

26 tháng 1 2018

Vì \(2x⋮x\Rightarrow-5⋮x\)

\(\Rightarrow x\inƯ\left(-5\right)=\left\{5;-5\right\}\)

Thì Mmin = 1

3 tháng 2 2019

\(M=\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)

de M dat gia tri nho nhat thi 5/x nho nhat 

=> x = -1

kl_

3 tháng 2 2019

 Phương Uyên 2-(-5)=+7(âm - âm=dương)  

Để \(M_{min}\Rightarrow\left(2-\frac{5}{x}\right)_{min}\Rightarrow\left(\frac{5}{x}\right)_{max}\)

ta thấy 5>0 và không đổi => x>0

mà để \(\left(\frac{5}{x}\right)max\Rightarrow x_{min}\text{ mà }x>0\Rightarrow x=1\left(x\in Z\right)\)

Vậy ....

p/s: nếu x=-1 =>\(2-\frac{5}{x}=2-\frac{5}{-1}=2+5=7\)

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

\(B=\dfrac{-2x+24+16}{2x-24}=-1+\dfrac{16}{2x-24}=-1+\dfrac{8}{x-12}\)

Để B có giá trị nhỏ nhất thì x-12=-1

=>x=11

5 tháng 4 2020

a, A thuộc Z

b, A= 5

5 tháng 4 2020

a , A thuộc Z 

b , A= 5

k và kb nếu có thể 

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3