K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

\(27^3+9^5=\left(3^3\right)^3+\left(3^2\right)^5=3^9+3^{10}=3^9\cdot\left(1+3\right)=4\cdot3^9⋮4\)

1 tháng 7 2021

Ta có: 273+95=33.93+95=93.(33+92)=93.108=93.27.4\(⋮4\)

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

31 tháng 8 2020

Giúp mik vs ạ.Mik đag cần

28 tháng 8 2016

95=....9

274=.....1

=>95+274=....9+....1=......0

Do.....0 chia hết cho 10

=>95+274 chia hết cho 10

k nha Lê Mai Phương

  
28 tháng 8 2016

.... Là gì vậy bạn

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

7 tháng 10 2016

 Mình làm đc mỗi 1 câu, Thông cảm

7 tháng 10 2016

7^6+7^5+7^4 chia hết cho 11

= 7^4.2^2+7^4.7+7^4

= 7^4.(2^2+7+1)

= 7^4. 11

Vì tích này có số 11 nên => chia hết cho 7

26 tháng 9 2019

Thực hiện phép nhân đa thức với đa thức ở vế trái

a) VT = 3 u 2  + 9u + 27 – ( u 3  – 32 u 2  + 9u) = 27 –  u 3  = VP (đpcm).

b) VT = ( t 2  – 4)( t 2  + 4) =  t 4  – 16 = VP. (đpcm).