K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

`43^2004 + 43^2005 = 43^2004 (1 + 43) = 43^2004 . 44`

`=43^2004 . 4.11 \vdots 11`

`=>` ĐPCM.

NV
1 tháng 7 2021

\(43^{2004}+43^{2005}=43^{2004}\left(43+1\right)=44.43^{2004}⋮11\) do \(44⋮11\)

27 tháng 9 2016

43^2004+43^2005=43^2004+43^2004.43

=43^2004.(1+43)

=43^2004.44

29 tháng 9 2016

Ta có 43^2004  + 43^2005 = 43^2004 + 43^2004 x 43 

=43^2004 x (43 + 1) =43^2004 x 44

=43^2004 x 11 x 4 chia hết cho 11

26 tháng 8 2017

a)\(43^{2004}+43^{2005}\)

\(=43^{2004}+43^{2004}.43\)

\(=43^{2004}.\left(1+43\right)\)

\(=43^{2004}.44\)

\(=43^{2004}.4.11\)chia het cho 11

b)\(27^3+9^5\)

\(=3^9+3^{10}\)

\(=3^9\left(1+3\right)\)

\(=3^9.4\)chia het cho 4

a)

 Ta có :  

 A = 432004 + 432005 = 432004 . ( 1 + 43 ) = 432004 . 44

Có :  44 \(⋮\)11

=> A chia hết cho 11 

=> ĐPCM

b)

Ta có :

        B = 273 + 95 = 39 + 310 = 39 . ( 1 + 3 ) = 39 . 4

Có : 

        4\(⋮\)4

=> B \(⋮\)4

=> ĐPCM

        nha !!!

6 tháng 7 2016

                            Ta có :

                         (432004 + 432005) = 432004 x (1 + 43) = 432004 x 44

                        Vì 44 chia hết cho 11 nên 432004 x 44 chia hết cho 11 hay (432004 + 432005) chia hết cho 11 (ĐPCM)

                         Ủng hộ mk nha ^ ~ ^

6 tháng 7 2016

                         b) Ta có:

                           273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 x (1 + 3) = 39 x 4

                         Vì 4 chia hết cho 4 nên 39 x 4 chia hết cho 4 hay (273 + 95) chia hết cho 4 (ĐPCM)

                         Xin lổi vì đã làm thiếu nhg nhớ ủng hộ mk nha cảm ơn nhìu !!!

21 tháng 8 2018

a)   \(35^{2005}-35^{2004}=35^{2004}.\left(35-1\right)=35^{2004}.34=35^{2004}.2.17\)\(⋮\)\(17\)

c)    \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9.4\) \(⋮\)\(4\)

hok tốt

6 tháng 3 2018

Ta có:

\(19\equiv9\left(mod10\right)\)

\(11=1\left(mod10\right)\)

\(\Rightarrow19^{2005}+11^{2004}⋮10\)

11 tháng 8 2023

a) Lập bảng

n 1 2 3 4 5 6 7 8 ...
7n 7 9 3 1 7 9 3 1 ...
9n 9 1 9 1 9 1 9 1 ...

Ta có: 2018 : 4 = 504 (dư 2)

Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)

Vậy 20172018 + 20192018 chia hết cho 10

b) Làm tương tự như câu a)

27 tháng 10 2015

Ta thấy: 19 đồng dư với 9(mod 10)

=>19 đồng dư với -1(mod 10)

=>192004 đồng dư với (-1)2004(mod 10)

=>192004 đồng dư với 1(mod 10)

=>192004.19 đồng dư với 1.9(mod 10)

=>192005 đồng dư với 9(mod 10)

Lại có: 11 đồng dư với 1(mod 10)

=>112004 đồng dư với 12004(mod 10)

=>112004 đồng dư với 1(mod 10)

         =>192005+112004 đồng dư với 9+1(mod 10)

         =>192005+112004 đồng dư với 10(mod 10)

         =>192005+112004 đồng dư với 0(mod 10)

         =>192005+112004 chia hết cho 10