Cho tam giác đều ABC . Trên cạnh AC và AB lần lượt lấy các điểm E, F sao cho
AE + AF = BC. Nối BE, CF. Hãy tìm tất cả các cặp tam giác bằng nhau có thể có.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra DB=DE
Ta có: AB+BF=AF
AE+EC=AC
mà AF=AC
và AB=AE
nên BF=EC
b: Xét ΔBDF và ΔEDC có
BF=EC
\(\widehat{DBF}=\widehat{DEC}\)
BD=DE
Do đó: ΔBDF=ΔEDC
Suy ra: \(\widehat{BDF}=\widehat{EDC}\)
=>\(\widehat{BDF}+\widehat{BDE}=180^0\)
=>E,D,F thẳng hàng
c: Xét ΔAFC có
AB/AF=AE/AC
nên BE//FC
Ta có: ΔACF cân tại A
mà AD là đường phân giác
nên AD là đường cao
Chắc đề đây này:
Bài 4. Cho tam giác ABC có AB < AC và phân giác AD (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. Trên tia AB lấy điểm F sao cho AC = AF. Chứng minh:
a) DB = DE ; BF = CE
b) Ba điểm F , D , E thẳng hàng
c) BE // FC ; AD \(\perp\) FC
a) Ta có : AB = AC
=> ∆ABC cân tại A
=> ABC = ACB
AB = AC
Mà AF = AE
=> FB = EC
Xét ∆FCB và ∆EBC ta có :
ABC = ACB (cmt)
FB = EC (cmt)
BC chung
=> ∆FCB = ∆EBC (c.g.c)
=> BE = CF (dpcm)
b) Vì ∆FBC = ∆EBC (cmt)
=> BFO = CEO ( 2 góc tg ứng )
Xét ∆BFO và ∆CEO ta có :
FB = EC (cmt)
BFO = CEO (cmt)
FOB = EOC ( đối đỉnh)
=> ∆BFO = ∆CEO (g.c.g)
=> BO = OC
=> ∆BOC cân tại O
c) Gọi H là giao điểm của AO và BC
G là giao điểm của FE và AO
Ta có : AF = AE (gt)
=> ∆AFE cân tại A
Xét ∆FAG và ∆EAG ta có :
AF = AE
AFG = AEG ( ∆AFE cân tại A)
AG chung
=> ∆FAG = ∆EAG (c.g.c)
=> FAG = EAG ( 2 góc tương ứng)
=> AG là phân giác của BAC
Mà H nằm trên tia đối AO
=> AH là phân giác ∆ABC
=> AH vuông góc với BC (trong ∆ cân có phân giác đồng thời là trung trực ∆ ABC )