K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra DB=DE

Ta có: AB+BF=AF

AE+EC=AC

mà AF=AC

và AB=AE

nên BF=EC

b: Xét ΔBDF và ΔEDC có 

BF=EC

\(\widehat{DBF}=\widehat{DEC}\)

BD=DE

Do đó: ΔBDF=ΔEDC

Suy ra: \(\widehat{BDF}=\widehat{EDC}\)

=>\(\widehat{BDF}+\widehat{BDE}=180^0\)

=>E,D,F thẳng hàng

c: Xét ΔAFC có

AB/AF=AE/AC

nên BE//FC

Ta có: ΔACF cân tại A

mà AD là đường phân giác

nên AD là đường cao

Bạn ghi lại đề đi bạn

Chắc đề đây này:

Bài 4. Cho tam giác ABC có AB < AC và phân giác AD (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB. Trên tia AB lấy điểm F sao cho AC = AF. Chứng minh:
a) DB = DE ; BF = CE 
b) Ba điểm F , D , E  thẳng hàng
c) BE // FC ; AD \(\perp\) FC 

2 tháng 2 2019

5 tháng 1 2016

chtt nha huyền trần thị thanh

9 tháng 2 2022

a) Ta có : AB = AC 

=> ∆ABC cân tại A 

=> ABC = ACB 

AB = AC 

Mà AF = AE 

=> FB = EC 

Xét ∆FCB và ∆EBC ta có : 

ABC = ACB (cmt)

FB = EC (cmt)

BC chung 

=> ∆FCB = ∆EBC (c.g.c)

=> BE = CF (dpcm)

b) Vì ∆FBC = ∆EBC (cmt)

=> BFO = CEO ( 2 góc tg ứng )

Xét ∆BFO và ∆CEO ta có :

FB = EC (cmt)

BFO = CEO (cmt)

FOB = EOC ( đối đỉnh) 

=> ∆BFO = ∆CEO (g.c.g)

=> BO = OC

=> ∆BOC cân tại O

c) Gọi H là giao điểm của AO và BC 

G là giao điểm của FE và AO

Ta có : AF = AE (gt)

=> ∆AFE cân tại A 

Xét ∆FAG và ∆EAG ta có : 

AF = AE 

AFG = AEG ( ∆AFE cân tại A)

AG chung 

=> ∆FAG = ∆EAG (c.g.c)

=> FAG = EAG ( 2 góc tương ứng) 

=> AG là phân giác của BAC 

Mà H nằm trên tia đối AO

=> AH là phân giác ∆ABC 

=> AH vuông góc với BC (trong ∆ cân có phân giác đồng thời là trung trực ∆ ABC )