Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF(gt)
và AB=AC(ΔABC cân tại A)
nên EB=FC
Xét ΔEBC và ΔFCB có
EB=FC(cmt)
\(\widehat{EBC}=\widehat{FCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔEBC=ΔFCB(c-g-c)
Suy ra: EC=FB(hai cạnh tương ứng)
b) Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(ΔEBC=ΔFCB)
nên ΔDBC cân tại D(Định nghĩa tam giác cân)
a:
Sửa đề: Chứng minh DE\(\perp\)BC
Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
b: Sửa đề: F là giao điểm của AB và DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
Bài 1:
a: Ta có: ΔABC đều
mà BD,CE là các đường phân giác
nên BD,CE là các đường cao
b: Ta có: ΔABC đều
mà BD,CE là các đường cao
và BD cắt CE tại O
nên O là tâm đường tròn ngoại tiếp của ΔABC
Suy ra: OA=OB=OC
a) Ta có : AB = AC
=> ∆ABC cân tại A
=> ABC = ACB
AB = AC
Mà AF = AE
=> FB = EC
Xét ∆FCB và ∆EBC ta có :
ABC = ACB (cmt)
FB = EC (cmt)
BC chung
=> ∆FCB = ∆EBC (c.g.c)
=> BE = CF (dpcm)
b) Vì ∆FBC = ∆EBC (cmt)
=> BFO = CEO ( 2 góc tg ứng )
Xét ∆BFO và ∆CEO ta có :
FB = EC (cmt)
BFO = CEO (cmt)
FOB = EOC ( đối đỉnh)
=> ∆BFO = ∆CEO (g.c.g)
=> BO = OC
=> ∆BOC cân tại O
c) Gọi H là giao điểm của AO và BC
G là giao điểm của FE và AO
Ta có : AF = AE (gt)
=> ∆AFE cân tại A
Xét ∆FAG và ∆EAG ta có :
AF = AE
AFG = AEG ( ∆AFE cân tại A)
AG chung
=> ∆FAG = ∆EAG (c.g.c)
=> FAG = EAG ( 2 góc tương ứng)
=> AG là phân giác của BAC
Mà H nằm trên tia đối AO
=> AH là phân giác ∆ABC
=> AH vuông góc với BC (trong ∆ cân có phân giác đồng thời là trung trực ∆ ABC )