(3x - 30) : 4 = 15
Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{1,2}=\dfrac{y}{1,8}\)=\(\dfrac{x+y}{1,2+1,8}\)=\(\dfrac{15}{3}\)=5
Vậy x=5.1,2=6
y=5.1,8=9
\(\dfrac{x}{1,2}=\dfrac{y}{1,8}=\dfrac{x+y}{1,2+1,8}=\dfrac{15}{3}=5\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=9\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=-\dfrac{15}{5}=-3\)
=>x=-6; y=-9
`# \text {Ryo}`
`x/2 = y/3` và `x + y = -15`
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
`=> x/2 = y/3 = -3`
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-3\right)=-6\\y=3\cdot\left(-3\right)=-9\end{matrix}\right.\)
Vậy, `x = -6; y = -9.`
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$
$\Rightarrow 3(x^2+y^2)\geq 6xy$
$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$
$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$
Cộng theo vế các BĐT trên:
$4(x^2+y^2)+18\geq 6(xy+x+y)=90$
$\Rightarrow x^2+y^2=18$
Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$
Sầu Riêng: của em nếu $x,y$ dương thì đúng. Còn trong bài $x,y$ thực thì đến đoạn $(x+y+2)^2\geq 64$ thì không khẳng định $x+y\geq 6$ được nha.
a/ 3x(x+1) - 2x(x+2) = -1 - x
<=> 3x2 + 3x -2x2 - 4x + x + 1 = 0
<=> x2 + 1 = 0 <=> x2 = -1 (vô lí)
vậy k có x nào t/m đề
b/ 4(x+2) - 7(2x-1) + 9(3x-4) = 30
<=> 4x + 8 - 14x + 7 + 27x - 36 = 30
<=> 17x = 30 + 36 - 7 - 8 = 51
<=> x = 51/17 = 3
Vậy x = 3
a/ 3x(x+1) - 2x(x+2) = -1 - x
<=> 3x2 + 3x -2x2 - 4x + x + 1 = 0
<=> x2 + 1 = 0
<=> x2 = -1 (vô lí)
vậy ko có x nào t/m đề ra
b/ 4(x+2) - 7(2x-1) + 9(3x-4) = 30
<=> 4x + 8 - 14x + 7 + 27x - 36 = 30
<=> 17x = 30 + 36 - 7 - 8 = 51
<=> x = \(\dfrac{51}{13}\) = 3
Vậy x = 3
\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a.
4x(x-5) - (x-1)(4x-3)-5=0
4x^2-20x-4x^2+3x+4x+3=0
(4x^2-4x^2)+(-20x+3x+4x)+3=0
13x+3 = 0
13x=-3
x=-3/13
b,
(3x-4)(x-2)-3x(x-9)+3=0
3x^2-6x-4x+8 - 3x^2+27x+3=0
(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0
17x+11=0
17x=-11
x=-11/17
c, 2(x+3)-x^2-3x=0
2(x+3) - x(x+3)=0
(x+3)(2-x)=0
TH1: x+3 = 0; x=-3
TH2: 2-x=0;x=2
(3x - 30) : 4 = 15
3x - 30 = 15 . 4
3x - 30 = 60
3x = 60 + 30
3x = 90
x = 90 : 3
x = 30