Tìm số tự nhiên x thỏa mãn:(2.x+1 bình phương)=49 x=....................
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 27 : x dư 2 =>29 chia hết cho x
40 : x dư 1=> 50 chia hết cho x
Mà x là số lớn nhất nên x=ƯCLN(29;50)
Nhưng 50 và 29 là số nguyên tố cùng nhau nên x=29.50=1450
x=1450
có 27 : x dư 2 =>29 chia hết cho x
40 : x dư 1=> 50 chia hết cho x
Mà x là số lớn nhất nên x=ƯCLN(29;50)
Nhưng 50 và 29 là số nguyên tố cùng nhau nên x=29.50=1450
x=1450
Ta có : (2x +3)2=49
<=> (2x + 3)2= 72
<=> 2x + 3 =7
<=> 2x = 4
<=> x =2
Vậy x =2
\(\left(2x+3\right)^2=49\Rightarrow\left(2x+3\right)=7\Rightarrow2x=7-3\Rightarrow2x=4\Rightarrow x=4:2\Rightarrow x=2\)
Ta có : \(3y^2+1=4x^2\)
\(\Leftrightarrow3y^2=4x^2-1\)
\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)
Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)
TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )
TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)
Khi đo s: \(2x-1=\left(2k+1\right)^2\)
\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
Lời giải:
Tập xác định của phương trình
Biến đổi vế trái của phương trình
Phương trình thu được sau khi biến đổi
Rút gọn thừa số chung
Đơn giản biểu thức
Rút gọn
Lời giải thu được
x=3
k mik