Tìm tất cả các hàm số f: R -> R thoả mãn điều kiện: f((x - y)2) = x2 - 2yf(x) + ((f(y)2); ∀x, y ∈ R.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm tất cả các hàm số f: R -> R thoả mãn điều kiện: f((x - y)2) = x2 - 2yf(x) + ((f(y)2); ∀x, y ∈ R.
Bài 1:
Cho $y=0$ thì: $f(x^3)=xf(x^2)$
Tương tự khi cho $x=0$
$\Rightarrow f(x^3-y^3)=xf(x^2)-yf(y^2)=f(x^3)-f(y^3)$
$\Rightarrow f(x-y)=f(x)-f(y)$ với mọi $x,y\in\mathbb{R}$
Cho $x=0$ thì $f(-y)=0-f(y)=-f(y)$
Cho $y\to -y$ thì: $f(x+y)=f(x)-f(-y)=f(x)--f(y)=f(x)+f(y)$ với mọi $x,y\in\mathbb{R}$
Đến đây ta có:
$f[(x+1)^3+(x-1)^3]=f(2x^3+6x)=f(2x^3)+f(6x)$
$=2f(x^3)+6f(x)=2xf(x^2)+6f(x)$
$f[(x+1)^3+(x-1)^3]=f[(x+1)^3-(1-x)^3]$
$=(x+1)f((x+1)^2)-(1-x)f((1-x)^2)$
$=(x+1)f(x^2+2x+1)+(x-1)f(x^2-2x+1)$
$=(x+1)[f(x^2)+2f(x)+f(1)]+(x-1)[f(x^2)-2f(x)+f(1)]$
$=2xf(x^2)+4f(x)+2xf(1)$
Do đó:
$2xf(x^2)+6f(x)=2xf(x^2)+4f(x)+2xf(1)$
$2f(x)=2xf(1)$
$f(x)=xf(1)=ax$ với $a=f(1)$
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
Sửa lại đề câu 2 !!
Chẳng hạn .
Dễ dàng kiểm tra được rằng f(x) thoả mãn các điều kiện đã nêu
Thay \(x=0;y=0\) vào giả thiết ta được \(f\left(0\right)=0\)
Thay \(y=0\) ta được \(f\left(x\right)+f\left(-x\right)=0\Rightarrow f\) là hàm lẻ
(Phân tích 1 chút: khi đã có hàm lẻ, ta cần thế tiếp 1 cặp sao cho "khử" được biểu thức phức tạp dạng hàm lồng đầu tiên, bằng cách tìm 1 giá trị y sao cho: \(x.f\left(y\right)-y=-\left(x+y\right)\) hoặc là \(x.f\left(y\right)-y=-\left(xy-x\right)\). Cái thứ nhất cho ta \(x.\left[f\left(y\right)+1\right]=0\Rightarrow f\left(y\right)=-1\) , nghĩa là ta chỉ cần tìm 1 hằng số c sao cho \(f\left(c\right)=-1\). Cái thứ 2 ko cho điều gì tốt nên bỏ qua. Bây giờ ta đi tìm c. Vế phải cần bằng -1, nghĩa là \(xy=-\dfrac{1}{2}\), vế trái cần khử bớt 2 số hạng. Nhưng trước khi có c thì \(f\left(x.f\left(y\right)-y\right)\) chưa khử được, nên ta cần khử cặp sau, bằng cách cho \(xy-x=-\left(x+y\right)\Rightarrow xy=-y\Rightarrow x=-1\), thay vào \(xy=-\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}\). Xong.)
Thế \(x=-1;y=\dfrac{1}{2}\) ta được:
\(f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)+f\left(-\dfrac{1}{2}+1\right)+f\left(-1+\dfrac{1}{2}\right)=-1\)
\(\Leftrightarrow f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)=-1\)
Đặt \(c=-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\) là 1 hằng số nào đó
\(\Rightarrow f\left(c\right)=-1\)
Thế \(y=c\) vào ta được:
\(f\left(x.f\left(c\right)-c\right)+f\left(cx-x\right)+f\left(x+c\right)=2c.x\)
\(\Leftrightarrow f\left(-x-c\right)+f\left(x+c\right)+f\left(cx-x\right)=2c.x\)
\(\Leftrightarrow f\left(cx-x\right)=2c.x\) (1)
- Nếu \(c=1\Rightarrow f\left(0\right)=2x\) ko thỏa mãn \(f\left(0\right)=0\)
\(\Rightarrow c\ne1\), khi đó đặt \(cx-x=t\) \(\Rightarrow x=\dfrac{t}{c-1}\)
(1) trở thành \(f\left(t\right)=\dfrac{2c}{c-1}.t\)
Đặt \(\dfrac{2c}{c-1}=a\) \(\Rightarrow f\left(t\right)=a.t\)
Hay hàm cần tìm có dạng \(f\left(x\right)=ax\) với a là hằng số
Gọi P(x,y) là phép thế của phương trình hàm đề bài.
P(x,x) cho ta: f(0)=x2-2xf(x)+f2(x). (Ở đây, f2(x) là f(x)f(x) chứ không phải là f(f(x))).
Đến đây cho x=0 ta suy ra: f(0)=f2(0). Ta được f(0)=0 hoặc f(0)=1.
Trường hợp 1: f(0)=0 suy ra: f2(x)-2xf(x)+x2=0 với mọi x thực. Suy ra: (f(x)-x)2=0 với mọi x nên f(x)=x với mọi x.
Thử lại thấy thỏa mãn.
Trường hợp 2: f(0)=1 tương tự trường hợp 1, ta suy ra với mọi x thì f(x)=x-1 hoặc f(x)=x+1.
P(x,0) suy ra: f(x2)=x2+1. Do đó với mọi x không âm thì f(x)=x+1.
P(0,y) suy ra: f(y2)=f2(y)-2y suy ra: (y+1)2=f2(y) với mọi y thực.
Nếu tồn tại a thực khác 0 sao cho: f(a)=a-1. Thay y=a ta được: (a+1)2=f2(a)=(a-1)2 suy ra:
a2+2a+1=a2-2a+1 suy ra: a=0(vô lí). Do đó: f(x)=x+1 với mọi x thực.
Thử lại không thỏa mãn. Vậy f(x)=x với mọi x.