K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Ta có: \(x^2-6x+9=\left(x-3\right)^2\)

b) Ta có: \(27+27x+9x^2+9x^3=27\left(1+x\right)+9x^2\left(1+x\right)=\left(1+x\right)\cdot\left(27+9x^2\right)=9\left(1+x\right)\left(3+x^2\right)\)

c) Ta có: \(x^2-25-2xy+y^2=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)

d) Ta có: \(7y^4-14y^3+7y^2=7y^2\left(y^2-2y+1\right)=7y^2\left(y-1\right)^2\)

e) Ta có: \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)

28 tháng 8 2019

Ko ghi đề

\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)

Mấy cái khác cg lm như v (b thì 3b)

Nhớ đúng mk nhá

10 tháng 1 2016

x/3=y/4=z/5 =>2x2/18=2y2/32=3z2/75=(2x2+2y2-3z2)/(18+32-75)

=-100/-25=4

Vậy x=6 hoặc x=-6;y=8 hoặc y=-8; z=10 hoặc z=-10 

29 tháng 2 2020

a,\(\left(x-1\right)^2+\left(y-3\right)^{10}+\left(z+4\right)^{100}=0\)0(1)

Có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-3\right)^{10}\ge0\\\left(z+4\right)^{100}\ge0\end{cases}}\)(2)

Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^{10}=0\\\left(z+4\right)^{100}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-1=0\Rightarrow x=1\\y-3=0\Rightarrow y=3\\z+4=0\Rightarrow z=-4\end{cases}}\)

Em làm tương tự với câu b, không hiểu gì thì hỏi anh

18 tháng 3 2023

Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)
\(\Rightarrow x=3k;y=4k;z=2k\)
Mà \(x^3-y^3+z^3=-29\)
\(\Rightarrow\left(3k\right)^3-\left(4k\right)^3+\left(2k\right)^3=-29\)
\(\Rightarrow27k^3-64k^3+8k^3=-29\)
\(\Rightarrow-29k^3=-29\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=2\end{matrix}\right.\)
#DatNe

18 tháng 3 2023

Theo đầu bài ra ta có :

x/3=y/4=z/2=x^3/27= x^3/64= z^3/8 và x^3-y^3+z^3 =-29

áp dụng tc dãy tỉ số = nhau nên ta có :

x^3/27=z^3/64= z^3/8=x^3-y^3+z^3/ 27-64+8=-29/-29=1

x/3=1 => x=3

y/4=1=>x=4

x/2=1=>x=2

vậy x=3 ; y=4 ;z=2

25 tháng 12 2020

ko có biết

27 tháng 3 2017

Đặt \(A=xy+x^2y^2+x^3y^3+...+x^{100}y^{100}\)

\(\Rightarrow A=xy+\left(xy\right)^2+\left(xy\right)^3+...+\left(xy\right)^{100}\)

\(\Rightarrow A=\left(-1\right)+1+\left(-1\right)+...+1\) ( 100 số hạng )

\(\Rightarrow A=\left[\left(-1\right)+1\right]+\left[\left(-1\right)+1\right]+...+\left[\left(-1\right)+1\right]\) ( 50 cặp số )

\(\Rightarrow A=0\)

Vậy A = 0

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:

$A=9+2.3^2+2.3^3+2.3^4+...+2.3^{2023}$

$A-9=2(3^2+3^3+3^4+...+3^{2023})$

$3(A-9)=2(3^3+3^4+3^5+...+3^{2024})$

$\Rightarrow 3(A-9)-(A-9)=2(3^{2024}-3^2)$

$2(A-9)=2.3^{2024}-18$

$\Rightarrow 2A-18=2.3^{2024}-18$

$\Rightarrow A=3^{2024}\vdots 3^{2023}$ (đpcm)