K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

\(\Rightarrow3x^3-6x^2-6x-2x^2+4x+4=0\)

\(\Rightarrow3x\left(x^2-2x-2\right)-2\left(x^2-2x-2\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)

=> \(3x-2=0\Rightarrow3x=2\Rightarrow x=\frac{2}{3}\)

hoặc \(x^2-2x-2=0\)

tính theo denta ta đc : \(x_1=1+\sqrt{3};x_2=1-\sqrt{3}\)

4 tháng 3 2019

Với dạng bài này ta chỉ việc chia hoocne là ra nhé!

\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)

\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)

4 tháng 3 2019
https://i.imgur.com/1LBiPm6.jpg
29 tháng 1 2022

1.

<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)

2.

<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

3.

<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)

4.

<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

5. 

<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)

6,7. ko đủ điều kiện tìm

29 tháng 1 2022

Oki pạn cảm ơn

 

12 tháng 5 2022

*vn:vô nghiệm.

a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).

b. \(16x^2-8x+5=0\)

\(\Leftrightarrow16x^2-8x+1+4=0\)

\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)

-Vậy S=∅.

c. \(2x^3-x^2-8x+4=0\)

\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)

-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).

d. \(3x^3+6x^2-75x-150=0\)

\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)

-Vậy \(S=\left\{-2;\pm5\right\}\)

27 tháng 8 2018

a)  \(x^3+3x^2+3x+2=0\)

<=>  \(x^3+x^2+x+2x^2+2x+2=0\)

<=>  \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)

<=>  \(\left(x+2\right)\left(x^2+x+1\right)=0\)

tự làm

b) \(x^4-2x^3+2x-1=0\)

<=>  \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)

<=>  \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)

<=>  \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)

<=>  \(\left(x-1\right)^3\left(x+1\right)=0\)

tự làm

27 tháng 8 2018

c)   \(x^4-3x^3-6x^2+8x=0\)

<=>   \(x\left(x^3-3x^2-6x+8\right)=0\)

<=>  \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)

<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)

<=>   \(x\left(x-4\right)\left(x^2+x-2\right)=0\)

<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)

tự làm

27 tháng 8 2018

a ) \(x^3+3x^2+3x+2=0\)

\(\Leftrightarrow x^3+3x^2+3x+1+1=0\)

\(\Leftrightarrow\left(x+1\right)^3+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=-1\)

\(\Leftrightarrow x+1=-1\)

\(\Leftrightarrow x=-2\)

Vậy \(x=-2\)

b ) \(x^4-2x^3+2x-1=0\)

\(\Leftrightarrow x^4-1-2x\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1-2x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^3\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

27 tháng 8 2018

a, \(x^3+3x^2+3x+2=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

b, \(x^4-2x^3+2x-1=0\)

\(\Leftrightarrow\left(x^4-x^3\right)-\left(x^3-x^2\right)-\left(x^2-x\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-x^2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x=1\)

20 tháng 6 2017

b)\(3x^3+6x^2-75x-150=0\Leftrightarrow3\left(x^3+2x^2-25x-50\right)=0\Leftrightarrow x^3+2x^2-25x-50=0\)

<=>\(x^2\left(x+2\right)-25\left(x+2\right)=0\Leftrightarrow\left(x^2-25\right)\left(x+2\right)=0\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+2\right)=0\)

<=>x-5=0 hoặc x+5=0 hoặc x+2=0<=>x=5 hoặc x=-5 hoặc x=-2

c)\(2x^5-3x^4+6x^3-8x^2+3=0\Leftrightarrow2x^5+x^4-4x^4-2x^3+8x^3+4x^2-12x^2+3=0\)

<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(4x^2-1\right)=0\)

<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(2x-1\right)\left(2x+1\right)=0\)

<=>\(\left(2x+1\right)\left(x^4-2x^3+4x^2-6x+3\right)=0\)

<=>\(\left(2x+1\right)\left(x^4-2x^3+x^2+3x^2-6x+3\right)=0\)

<=>\(\left(2x+1\right)\left[x^2\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)\right]=0\)

<=>\(\left(2x+1\right)\left(x^2+3\right)\left(x^2-2x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(x^2+3\right)\left(x-1\right)^2=0\)

Vì \(x^2\ge0\Rightarrow x^2+3\ge3>0\Rightarrow\orbr{\begin{cases}2x+1=0\\\left(x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)

20 tháng 6 2017

a) 2x3 - x2 - 8x + 4 = 0

x2.(2x - 1) - 4.(2x - 1) = 0

(x2 - 4)(2x - 1) = 0

\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=\frac{1}{2}\end{cases}}\)

Với x2 = 4

=> x = 2 hoặc x = -2

=> x = {-2 ; 2 ; \(\frac{1}{2}\))

1 tháng 3 2020

Ta có : \(x^4+2x^3-3x^2-8x-4=0\)

=> \(x^4-2x^3+4x^3-8x^2+5x^2-10x+2x-4=0\)

=> \(x^3\left(x-2\right)+4x^2\left(x-2\right)+5x\left(x-2\right)+2\left(x-2\right)=0\)

=> \(\left(x^3+4x^2+5x+2\right)\left(x-2\right)=0\)

=> \(\left(x^3+x^2+3x^2+3x+2x+2\right)\left(x-2\right)=0\)

=> \(\left(x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\right)\left(x-2\right)=0\)

=> \(\left(x^2+3x+2\right)\left(x+1\right)\left(x-2\right)=0\)

=> \(\left(x^2+x+2x+2\right)\left(x+1\right)\left(x-2\right)=0\)

=> \(\left(x\left(x+1\right)+2\left(x+1\right)\right)\left(x+1\right)\left(x-2\right)=0\)

=> \(\left(x+1\right)\left(x+2\right)\left(x+1\right)\left(x-2\right)=0\)

=> \(\left(x+1\right)^2\left(x+2\right)\left(x-2\right)=0\)

=> \(\left[{}\begin{matrix}\left(x+1\right)^2=0\\x+2=0\\x-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-1\\x=-2\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{-1,-2,2\right\}\)

1 tháng 3 2020

x4 + 2x3 - 3x2 -8x - 4 = 0

⇔ x4 + 2x3 - 2x2 - 4x - x2 - 4x - 4 = 0

⇔ x3(x + 2) - 2x(x + 2) - (x + 2)2 = 0

⇔ (x + 2)(x3 - 2x - 1) = 0

⇔ (x - 2)(x3 - x - x - 1) =

⇔ (x - 2)[x(x2 - 1) - (x + 1)] = 0

⇔ (x - 2)(x + 1)(x2 + x - 1) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\) (Vì x2 + x - 1 > 0)

Vậy phương trình có tập nghiệm S={2;-1}

3 tháng 2 2019

\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)

\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)

.......................................................................................

\(x^3-8x^2-8x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)

......................................................................................

11 tháng 2 2019

cảm ơn nha 

30 tháng 1 2016

b)<=>x^4-4x^3+2x^2+8x-10=(x^2-2)(x^2-4x+5

=>x^2-2=0

=>x^2=2

=>x=\(\sqrt{2}\) và x=\(-\sqrt{2}\)

=>x^2-4x+5=0

=>(-4)^2-4(1.5)=-4( cái này là D)

=>D<0 => phương trình ko có nghiệm thực

=>x=\(+-\sqrt{2}\)

 

31 tháng 1 2016

em moi hoc lop 6 thoi chi a

15 tháng 2 2020
https://i.imgur.com/F0lkk7k.jpg
15 tháng 2 2020

phần cuối mk chụp ko đc hết . chỗ cuối là bằng \(\frac{-5}{-3}\)=\(\frac{5}{3}\)