K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔMAC có \(\widehat{BMC}\) là góc ngoài tại đỉnh M

nên \(\widehat{BMC}=\widehat{MAC}+\widehat{MCA}=60^0+\widehat{MCA}\)

=>\(\widehat{BMC}>60^0\)(1)

Vì M nằm giữa A và B

nên tia CM nằm giữa hai tia CA và CB

=>\(\widehat{ACM}+\widehat{BCM}=\widehat{ACB}\)

=>\(\widehat{BCM}+\widehat{ACM}=60^0\)

=>\(\widehat{BCM}< 60^0\left(2\right)\)

mà \(\widehat{B}=60^0\)(ΔABC đều)(3)

nên từ (1),(2),(3) suy ra \(\widehat{BMC}>\widehat{B}>\widehat{MCB}\)

=>BC>MC>MB

=>Chọn D

17 tháng 3 2022

có thể vẽ hình ra được không ạ?

21 tháng 9 2021

Ai giúp đi

mình cần trong 5 phút nữa

 

12 tháng 5 2017

Chọn C

Ta có G(1;0;2), ta tìm hình chiếu của G lên mặt phẳng (P) bằng cách tìm giao điểm của đường thẳng qua G vuông góc với mặt phẳng (P) với mặt phẳng (P).

 

Phương trình đường thẳng qua điểm G và vuông góc với mặt phẳng (P)

2 tháng 4 2022

\(x=3-2\sqrt{2}=\sqrt{2^2}-2.1.\sqrt{2}+1^2=\left(\sqrt{2}-1\right)^2\)

\(A=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-4}{\sqrt{\left(\sqrt{2}-1\right)^2-2}}=\dfrac{\sqrt{2}-1-4}{\sqrt{2}-1-2}=\dfrac{\sqrt{2}-5}{\sqrt{2}-3}\)

 

 

 

 

3 tháng 4 2022

Viết bình phương chưa đúng 

\(x=3-2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}\right)^2+2.\sqrt{2}.1+1^2=\left(\sqrt{2}+1\right)^2\)

ko nên viết bình vào căn nhé :)

10 tháng 1 2017

Đáp án D.

Gọi I là điểm thỏa mãn 

Ta có:

 => M là hình chiếu của I trên (P) dễ thấy

 

26 tháng 8 2018

15 tháng 1 2017

Chọn D

13 tháng 2 2018

Đáp án C

hay M là hình chiếu của G lên mặt phẳng (P).

Ta có G(1;0;2), ta tìm hình chiếu của G lên mặt phẳng (P) bằng cách tìm giao điểm của đường thẳng qua G vuông góc với mặt phẳng (P) với mặt phẳng (P).

Phương trình đường thẳng qua điểm G và vuông góc với mặt phẳng (P)