B=x^2-7x+40 giúp em vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) = 9x4 + 5x3 + 8x2 - 15x3 - 4x2 - x4 + 15 - 7x2
= (9x4 - x4) + (5x3 - 15x3) + (8x2 - 4x2 - 7x2) + 15
= 8x4 - 10x3 - 3x2 + 15
Ta có: P(1) = 8. 14 - 10. 13 - 3. 12 + 15 = 8 - 10 - 3 + 15 = 10
P(0) = 8. 04 - 10. 03 - 3. 02 + 15 = 0 - 0 - 0 + 15 = 15
P(-1) = 8.(-1)4 - 10(-1)3 - 3(-1)2 + 15 = -8 - (-10) - (-3) + 15 = 20
a) | 9 + 7x | = 3 - 5x
\(\Rightarrow\orbr{\begin{cases}9+7x=3-5x\\9+7x=-\left(3-5x\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}7x+5x=3-9\\9+7x=-3+5x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}12x=-6\\7x-5x=-3-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\2x=-12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=-6\end{cases}}\)
Lời giải:
$3x^3-7x+4<0$
$\Leftrightarrow (x-1)(3x^2+3x-4)<0$
Điều này xảy ra khi mà:
TH1: $x-1>0$ và $3x^2+3x-4<0$
$\Leftrightarrow x>1$ và $3x^2+3x-4<0$
Với $x>1$ thì $3x^2+3x-4> 3+3-4>0$ nên điều này không thể xảy ra.
TH2: $x-1<0$ và $3x^2+3x-4>0$
$\Leftrightarrow x<1$ và $3x^2+3x-4>0$
$\Leftrightarrow x<1$ và $(x-\frac{-3+\sqrt{57}}{6})(x-\frac{-3-\sqrt{57}}{6})>0$
$\Leftrightarrow x<1$ và ($x> \frac{-3+\sqrt{57}}{6}$ hoặc $x< \frac{-3-\sqrt{57}}{6})$
$\Leftrightarrow \frac{-3+\sqrt{57}}{6}< x< 1$ hoặc $x< \frac{-3-\sqrt{57}}{6}$
Từ \(7x=2y\Rightarrow\frac{x}{2}=\frac{y}{7}\)
Áp dụng tc dãy tỉ
\(\frac{x}{2}=\frac{y}{7}=\frac{x-y}{2-7}=\frac{16}{-5}\)
Với \(\frac{x}{2}=\frac{16}{-5}\Rightarrow x=2\cdot\frac{16}{-5}=-\frac{32}{5}\)
Với \(\frac{y}{7}=\frac{16}{-5}\Rightarrow y=7\cdot\frac{16}{-5}=\frac{-112}{5}\)
\(x^4+2014x^2+2013x+2014\)
\(=x^4+2014x^2+2014x-x+2014\)
\(=\left(x^4-x\right)+\left(2014x^2+2014x+2014\right)\)
\(=x\left(x^3-1\right)+2014\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2014\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2014\right)\)
b)\(x^8+7x^4+6\)
\(=x^8+x^4+6x^4+6\)
\(=x^4\left(x^4+1\right)+6\left(x^4+1\right)\)
\(=\left(x^4+1\right)\left(x^4+6\right)\)
b) \(x^8+7x^4+16\)
\(=\left(x^8+8x^4+16\right)-x^4\)
\(=\left[\left(x^4\right)^2+2.x^4.4+4^2\right]-x^4\)
\(=\left(x^4+4\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+4-x^2\right)\left(x^4+4+x^2\right)\)
a) x3 - x2 - x + 1
= x2.(x - 1) - (x - 1)
= (x - 1).(x2 - 1)
= (x - 1).(x - 1).(x + 1)
= (x - 1)2.(x + 1)
b) 3x2 - 3xy + 5y - 5x
= 3x.(x - y) - 5.(x - y)
= (x - y).(3x - 5)
c) x3 - 7x - 6
= x3 - 4x - 3x - 6
= x.(x2 - 4) - 3.(x + 2)
= x.(x - 2).(x + 2) - 3.(x + 2)
= (x + 2).[x.(x - 2) - 3]
= (x + 2).(x2 - 2x - 3)
= (x + 2).(x2 - 3x + x - 3)
= (x + 2).[x.(x - 3) + (x - 3)]
= (x + 2).(x - 3).(x + 1)
Ta có : \(156:\left(7x+135\right):x=\frac{156}{\frac{7x+135}{x}}=156.\frac{x}{7x+135}\)
\(\Rightarrow156.\frac{x}{7x+135}=13\)
\(\Rightarrow\frac{x}{7x+135}=\frac{13}{156}\)
\(\Rightarrow\frac{x}{7x+135}=\frac{1}{12}\)
\(\Rightarrow12x=7x+135\)
\(\Rightarrow5x=135\)
\(\Rightarrow x=27\)
\(156:\left(7x+135\right):x=13\)
\(\left(7x+135\right):x=12\)
\(7x+135=12x\)
\(7x-12x=-135\)
\(-5x=-135\)
\(x=\frac{-135}{-5}\)
\(x=27\)
hok tốt!!
a) \(\frac{4x}{\sqrt{7x-6}}+\frac{4\sqrt{7x-6}}{x}=8\) Đặt \(\frac{x}{\sqrt{7x-6}}=t\left(ĐK:t\ge0\right)\Leftrightarrow\frac{1}{t}=\frac{\sqrt{7x-6}}{x}\\ Pt\Leftrightarrow4t+\frac{4}{t}=8\Leftrightarrow4t^2+4-8t=0\Leftrightarrow t=1\left(tm\right)\)
Với
\(t=1\Leftrightarrow\frac{x}{\sqrt{7x-6}}=1\Leftrightarrow x=\sqrt{7x-6}\Leftrightarrow x^2=7x-6\Leftrightarrow x^2-7x+6=0\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=1\end{array}\right.\)
Vậy \(s=\left\{1;6\right\}\)
\(B=x^2-2\times x\times\frac{7}{2}+\frac{49}{4}-\frac{49}{4}+15\)
\(B=\left(x-\frac{7}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
GTNN của B = 11/4 khi \(x=\frac{7}{2}\)
Bạn thử sử dụng hằng đẳng thức xem : (X-\(\frac{7}{2}\))\(^2\)+ \(\frac{11}{4}\)\(\ge\)\(\frac{11}{4}\)
vậy GTNN của biểu thức là B=\(\frac{11}{4}\) Khi X=\(\frac{7}{2}\)
(Mình nghĩ đáp án là như vậy)
đề đâu ạ
\(B=x^2-7x+40\)
\(B=\left(x-\frac{7}{2}\right)^2+\frac{111}{4}\)
\(MinB=\frac{111}{4}\)khi \(x=\frac{7}{2}\)