![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4+2014x^2+2013x+2014\)
\(=x^4+2014x^2+2014x-x+2014\)
\(=\left(x^4-x\right)+\left(2014x^2+2014x+2014\right)\)
\(=x\left(x^3-1\right)+2014\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2014\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2014\right)\)
b)\(x^8+7x^4+6\)
\(=x^8+x^4+6x^4+6\)
\(=x^4\left(x^4+1\right)+6\left(x^4+1\right)\)
\(=\left(x^4+1\right)\left(x^4+6\right)\)
b) \(x^8+7x^4+16\)
\(=\left(x^8+8x^4+16\right)-x^4\)
\(=\left[\left(x^4\right)^2+2.x^4.4+4^2\right]-x^4\)
\(=\left(x^4+4\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+4-x^2\right)\left(x^4+4+x^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x3 - x2 - x + 1
= x2.(x - 1) - (x - 1)
= (x - 1).(x2 - 1)
= (x - 1).(x - 1).(x + 1)
= (x - 1)2.(x + 1)
b) 3x2 - 3xy + 5y - 5x
= 3x.(x - y) - 5.(x - y)
= (x - y).(3x - 5)
c) x3 - 7x - 6
= x3 - 4x - 3x - 6
= x.(x2 - 4) - 3.(x + 2)
= x.(x - 2).(x + 2) - 3.(x + 2)
= (x + 2).[x.(x - 2) - 3]
= (x + 2).(x2 - 2x - 3)
= (x + 2).(x2 - 3x + x - 3)
= (x + 2).[x.(x - 3) + (x - 3)]
= (x + 2).(x - 3).(x + 1)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=x^2-2\times x\times\frac{7}{2}+\frac{49}{4}-\frac{49}{4}+15\)
\(B=\left(x-\frac{7}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
GTNN của B = 11/4 khi \(x=\frac{7}{2}\)
Bạn thử sử dụng hằng đẳng thức xem : (X-\(\frac{7}{2}\))\(^2\)+ \(\frac{11}{4}\)\(\ge\)\(\frac{11}{4}\)
vậy GTNN của biểu thức là B=\(\frac{11}{4}\) Khi X=\(\frac{7}{2}\)
(Mình nghĩ đáp án là như vậy)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x(x-5)+2(x-5) = (x-5)(x+2)
b) (x-7)(x-2)
c) (x+2)(x^2+2x+4)+5y(x+2) = (x+2)(x^2+2x+4+5y)
d) (x^2+8)^2 -16x^2 = (x^2+8-4x)(x^2+8+4x)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
đề đâu ạ
\(B=x^2-7x+40\)
\(B=\left(x-\frac{7}{2}\right)^2+\frac{111}{4}\)
\(MinB=\frac{111}{4}\)khi \(x=\frac{7}{2}\)