Tìm các số tự nhiên a, b thỏa mãn a+b=120 và (a, b)=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ƯCLN\left(a;b\right)=15\)\(\Rightarrow\hept{\begin{cases}a=15m\\b=15n\end{cases}}\)với \(m;n\in\)N* và ƯCLN(m;n)=1
Có: a + b = 120 <=> 15m + 15n = 120 <=> 15( m + n ) = 120 <=> m + n = 8
Vì m;n nguyên tố cùng nhau nên ta loại các giá trị m;n cùng chẵn, chỉ còn lại 4 cặp số m;n mà ƯCLN(m;n)=1 :
+) m = 1 và n = 7 => a = 15 và b = 105
+) m = 3 và n = 5 => a = 45 và b = 75
+) m = 5 và n = 3 => a = 75 và b = 45
+) m = 7 và n = 1 => a = 105 và b = 15
Vậy ..........................
Vì (a,b) = 15 => \(\hept{\begin{cases}a=15.m\\b=15.n\end{cases}\left(m,n\in N\right);\left(m,n\right)=1}\)
Ta có: a + b = 120
15.m + 15.n = 120
15(m + n) = 120
m + n = 120 : 15
m + n = 8
Mà (m,n) = 1
Ta có bảng:
m | 1 | 3 | 5 | 7 |
n | 7 | 5 | 3 | 1 |
a | 15 | 45 | 75 | 105 |
b | 105 | 75 | 45 | 15 |
Vậy các cặp giá trị (a,b) thỏa mãn là (15;105) ; (45;75) ; (75;45) ; (105;15)
Ta có :
a . b = ƯCLN ( a , b ) . BCNN ( a , b )
=> a . b = 12 . 240 =
=> a . b = 2880
Vì ƯCLN ( a , b ) = 12
=> a = 12m
b = 12 . n ( m , n ) = 1
=> a . b = 12m . 12n = 144 . mn = 2880
=> mn = 2880 : 144
=> mn = 20
Ta thấy 20 = 1 . 20 = 2 . 10 = 4 . 5
Vì ( m , n ) = 1
=> ( m , n ) = ( 1 ; 20 ) , ( 20 ; 1 ) , ( 4 ; 5 ) , ( 5 ; 4 )
=> ( a , b ) = ( 12 ; 240 ) , ( 240 ; 12 ) , ( 48 , 60 ) , ( 60 ; 48 )
Vậy ab = ( 12 ; 240 )
= ( 240 ; 12 )
= ( 48 ; 60 )
= ( 60 ; 48 )
a) \(10^a+483=b^2\) (*)
Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)
Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.
(Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)
b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))
Đặt (a;b) = d thì a = dm ; b = dn (m,n \(\in\) N*)
Ta có : a + b = dm + dn = d(m + n) = 92 (1)
và [a;b] = [dm;dn] = dmn
=> (a;b) + [a;b] = d + dmn = d(1 + mn) = 484 (2)
Từ (1) và (2) => ......
\(11< a< 15\)
\(\Rightarrow a=\left\{12;13;14\right\}\)
\(12< c< 15\)
\(\Rightarrow c=\left\{13;14\right\}\)
\(a< b< c\)
\(\Rightarrow a=12,b=13,c=14\)
Ta có: 11 < a < 15
=> a \(\in\left\{12;13;14\right\}\)
12 < c < 15
Mà a < b < c
=> a = 12 ; b = 13 ; c = 14
a: Để A là số tự nhiên thì \(n+8\in\left\{8;9;12;18;24;36;72\right\}\)
hay \(n\in\left\{0;1;3;10;18;28;64\right\}\)
` 16<a<b`
`20>c>b`
`=>16<a<b<b<20/
`=> a= 17`
`b = 18`
`c = 19`
bai nay minh khong bit cach lam nua