Cho P = \(\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}\) (đk x>-0 ; x khác 1/2 )
TÌM X BT |P| > HOẶC BẰNG P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=A\cdot B\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
ta có \(đk:x>0\) \(\Rightarrow\) \(3\sqrt{x}>0\)
\(\Rightarrow\) \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}< 0\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
vậy \(0< x< 4\)
Bài 1 : Rút gọn biểu thức :
\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)
\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)
\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)
\(=-10\sqrt{2}+10-7+30\sqrt{2}\)
\(=20\sqrt{2}+3\)
Bài 2:
a) ĐKXĐ : x # 4 ; x # - 4
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\)
Vậy, để P = 2 thì x = 16.
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
c: Để P<0 thì x-1<0
hay x<1
Kết hợp ĐKXĐ, ta được: 0<x<1
a) ĐKXĐ: \(x>0,x\ne1\)
b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\)
c) \(P=\dfrac{x-1}{\sqrt{x}}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)( do \(\sqrt{x}>0\))
đkxđ: x≥0; x≠4
\(A=\left(\dfrac{2+\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right):\dfrac{\sqrt{x}+3}{2\sqrt{x}-x}=\left[\dfrac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+3}=\dfrac{\left(2+\sqrt{x}-2+\sqrt{x}\right)\left(2+\sqrt{x}+2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+3}=\dfrac{2\sqrt{x}\cdot4}{2+\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
Ta có: \(A>0\Leftrightarrow\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}>0\)
Ta thấy: \(\sqrt{x}+2>0\forall x\ge0;\sqrt{x}+3>0\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)>0\)
⇒ Để A > 0 thì 8x > 0 <=> x>0
Vậy x>0 thì A>0
a) điều kiện : \(x\ge0;x\ne m^2\)
ta có : \(P=\dfrac{2\sqrt{x}}{\sqrt{x}+m}+\dfrac{\sqrt{x}}{\sqrt{x}-m}-\dfrac{m^2}{4x-4m^2}\)
\(\Leftrightarrow P=\dfrac{2\sqrt{x}}{\sqrt{x}+m}+\dfrac{\sqrt{x}}{\sqrt{x}-m}-\dfrac{m^2}{4\left(\sqrt{x}+m\right)\left(\sqrt{x}-m\right)}\) \(\Leftrightarrow P=\dfrac{2\sqrt{x}\left(\sqrt{x}-m\right)+\sqrt{x}\left(\sqrt{x}+m\right)-m^2}{4\left(\sqrt{x}+m\right)\left(\sqrt{x}-m\right)}\) \(\Leftrightarrow P=\dfrac{3x-\sqrt{x}m-m^2}{4\left(\sqrt{x}+m\right)\left(\sqrt{x}-m\right)}\)b) ta có : \(P=0\Leftrightarrow3x-m\sqrt{x}-m^2\)
ta có : \(\Delta=\left(m^2\right)-3.4\left(-m^2\right)=13m^2\ge0\)
th1: \(m=0\) \(\Rightarrow\) phương trình có nghiệm duy nhất : \(\sqrt{x}=\dfrac{m}{6}\Leftrightarrow x=\dfrac{m^2}{36}\)
th2: \(m\ne0\) \(\Rightarrow\) phương trình có 2 nghiệm phân biệt : \(\left\{{}\begin{matrix}\sqrt{x}=\dfrac{m+\sqrt{13m^2}}{6}\\\sqrt{x}=\dfrac{m-\sqrt{13m^2}}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14m^2+2\sqrt{13}m^2}{36}\\x=\dfrac{14m^2-2\sqrt{13}m^2}{36}\end{matrix}\right.\)
c) để \(x>1\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2>36\\14m^2+2\sqrt{13}m^2>36\\14m^2-2\sqrt{13}m^2>36\end{matrix}\right.\)
\(\Rightarrow m^2>36\Leftrightarrow\left[{}\begin{matrix}m>6\\m< -6\end{matrix}\right.\)
Thấy : \(\sqrt{x}\ge0\)
\(\Rightarrow P=\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}>0\)
\(\Rightarrow\left|P\right|=P\)
Ta có : \(\left|P\right|=P\ge P\)
=> P = P .
Vậy \(\forall x>0\) TMYC đè bài
Ơ câu này giống câu ở dưới thế ?_? Lặp câu hỏi à bạn :v