Cho hình 4.3 có góc 𝐴 = góc 𝐷, góc 𝐸1 = góc 𝐶 , AE = CD. Chứng minh AB = DF.
Giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Vì AB // CD
=> ^A,^D ; ^B,^C là 2 cặp góc trong cùng phía với nhau
=> \(\hept{\begin{cases}\widehat{A}+\widehat{D}=180^0\\\widehat{B}+\widehat{C}=180^0\end{cases}}\Leftrightarrow\hept{\begin{cases}\widehat{D}+20^0+\widehat{D}=180^0\\2\cdot\widehat{C}+\widehat{C}=180^0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\cdot\widehat{D}=160^0\\3\cdot\widehat{C}=180^0\end{cases}\Leftrightarrow}\hept{\begin{cases}\widehat{D}=80^0\\\widehat{C}=60^0\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{A}=100^0\\\widehat{B}=120^0\end{cases}}\)
Vậy \(\widehat{A}=100^0\) ; \(\widehat{B}=120^0\) ; \(\widehat{C}=60^0\) ; \(\widehat{D}=80^0\)
Ta có:\(\widehat{A}+\widehat{D}=180^o\left(TCP\right)\left(1\right)\)
\(\widehat{A}-\widehat{D}=20^o\left(2\right)\)\(\Rightarrow\widehat{A}=20^o+\widehat{D}\)thế vào \(\left(1\right)\),Ta đc:
\(20^o+\widehat{D}+\widehat{D}=180^o\)
\(2\widehat{D}=160^o\)
\(\widehat{D}=160^o\div2=80^o\)
\(\widehat{A}=20^o+\widehat{D}=20^o+80^o=100^o\)
\(\widehat{B}+\widehat{C}=180^o\left(3\right)\)
\(\widehat{B}=2\widehat{C}\left(4\right)\)
Thế (4) vào (3) ta được:
\(2\widehat{C}+\widehat{C}=180^o\)
\(3\widehat{C}=180^o\)
\(\widehat{C}=60^o\)
\(\widehat{B}=2\widehat{C}=2.60^o=180^o\)
Vậy...
a) Do AD là đường phân giác của ∠BAC
⇒ BD/CD = AB/AC = 9/12 = 3/4
b) Xét hai tam giác vuông: ∆ABC và ∆EDC có:
∠C chung
⇒ ∆ABC ∽ ∆EDC (g-g)
a: BD/CD=AB/AC=3/4
b: Xét ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEDC
a: Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó: ΔAED=ΔBFC
Suy ra: DE=FC
Cho hình thoi 𝐴𝐵𝐶𝐷 (𝐴መ > 90). Gọi 𝐸 là hình chiếu vuông góc của 𝐴 trên 𝐵𝐶, 𝐹 là hình
chiếu vuông góc của 𝐶 trên 𝐴𝐷.
a) Tứ giác 𝐴𝐸𝐶𝐹 là hình gì? Vì sao?
b) 𝐵𝐷 cắt 𝐴𝐸 tại 𝐻, cắt 𝐶𝐹 tại 𝐾. Chứng minh rằng 𝐴𝐾 = 𝐶𝐻.
c) Gọi 𝐼 là giao điểm của 𝐴𝐾 và 𝐶𝐷, 𝐽 là giao điểm của 𝐶𝐻 và 𝐴𝐵. Chứng minh rằng 𝐸𝐼 ⊥ 𝐸𝐽
Ta có : AE = CD
=> AE + EC = CD + EC = AC = ED
Ta lại có : \(\widehat{E1}+\widehat{E2}=\widehat{C1}+\widehat{C1}=180^o\)
Mà \(\widehat{E1}=\widehat{C1}\)
\(\Rightarrow\widehat{E2}=\widehat{C2}\)
- Xét tam ABC và tam giác DFE có
\(\widehat{E2}=\widehat{C2}\)
AC = ED
\(\widehat{A}=\widehat{D}\)
=> Tam giác ABC = Tam giác DFE
=> AB = DE .
Ta có: \(\left\{{}\begin{matrix}\widehat{FED}=180^0-\widehat{E_1}\\\widehat{ACB}=180^0-\widehat{C_1}\end{matrix}\right.\)
Mà \(\widehat{E_1}=\widehat{C_1}\) \(\Rightarrow\widehat{FED}=\widehat{ACB}\)
Xét hai tam giác ABC và tam giác DFE có:
\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{FDE}\\AC=DE\left(AE=CD\right)\\\widehat{ACB}=\widehat{FED}\end{matrix}\right.\)
\(\Rightarrow\Delta ABC=\Delta DFE\) (g-c-g)
\(\Rightarrow AB=DF\)