K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

\(x^4+64+16x^2-16x^2\)

\(=\left(x^2+8\right)^2-16x^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

hk tốt

a: \(16x^3+0,25yz^3\)

\(=0,25\cdot x^3\cdot64+0,25\cdot yz^3\)

\(=0,25\left(64x^3+yz^3\right)\)

b: \(x^4-4x^3+4x^2\)

\(=x^2\cdot x^2-x^2\cdot4x+x^2\cdot4\)

\(=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)

c: \(x^3+x^2y-xy^2-y^3\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\cdot\left(x+y\right)^2\)

d: \(x^3+x^2+x+1\)

\(=x^2\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+1\right)\)

e: \(x^4-x^2+2x-1\)

\(=x^4-\left(x^2-2x+1\right)\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

f: \(2x^2-18\)

\(=2\cdot x^2-2\cdot9\)

\(=2\left(x^2-9\right)=2\left(x-3\right)\left(x+3\right)\)

g: \(x^2+8x+7\)

\(=x^2+x+7x+7\)

\(=x\left(x+1\right)+7\cdot\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)

h: \(x^4y^4+4\)

\(=x^4y^4+4x^2y^2+4-4x^2y^2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)

i: \(x^4+4y^4\)

\(=x^4+4x^2y^2+4y^4-4x^2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

k: \(x^2-2x-15\)

\(=x^2-5x+3x-15\)

\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)

a: =(6x)^2-(3x-2)^2

=(6x-3x+2)(6x+3x-2)

=(9x-2)(3x+2)

d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)

\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)

=8x(x^2+1)

e: =(4x)^2-2*4x*3y+(3y)^2

=(4x-3y)^2

f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)

\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)

g: =(4x)^3+1^3

=(4x+1)(16x^2-4x+1)

k: =x^3(27x^3-8)

=x^3(3x-2)(9x^2+6x+4)

l: =(x^3-y^3)(x^3+y^3)

=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)

17 tháng 12 2023

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

17 tháng 12 2023

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

Câu 1: A

Câu 21: A

 

1 tháng 11 2021

\(16,A\\ 17,C\\ 18,A\\ 19,C\\ 20,A\\ 21,A\)

20 tháng 7 2018

a)  \(4x^3-4x^2=4x^2\left(x-1\right)\)

b)  mk chỉnh đề

\(9x^2y^2+15x^2y-21xy^2=3xy\left(3xy+5x-7y\right)\)

c)   \(4x^2\left(x-2y\right)-20x\left(2y-x\right)=4x\left(x-2y\right)\left(x+5\right)\)

d)  \(4x^2-4x+1=\left(2x-1\right)^2\)

e)  bạn ktra lại đề

f)  \(16x^2+24xy+9y^2=\left(4x+3y\right)^2\)

a) Ta có: \(4x^2-28xy+49y^2\)

\(=\left(2x\right)^2-2\cdot2x\cdot7y+\left(7y\right)^2\)

\(=\left(2x-7y\right)^2\)

b) Ta có: \(x^2+8xy+16y^2\)

\(=x^2+2\cdot x\cdot4y+\left(4y\right)^2\)

\(=\left(x+4y\right)^2\)

c) Ta có: \(x^2-12x+36\)

\(=x^2-2\cdot x\cdot6+6^2\)

\(=\left(x-6\right)^2\)

17 tháng 7 2021

\(\left(2x-7y\right)^2\)

\(\left(6-x\right)^2\)

1 tháng 8 2019

\(a,3x^3-6x^2+3x\)

\(=3x\left(x^2-2x+1\right)\)

\(=3x\left(x-1\right)^2\)

\(b,16x^2y-4xy^2-4x^3\)

\(=-4x\left(x^2-4xy+4y^2-3y^2\right)\)

\(=-4x\left(x-2y+y\sqrt{3}\right)\left(x-2y-y\sqrt{3}\right)\)

8 tháng 8 2023

Câu 1:

\(4x^2+16x-9\)

\(=4x^2+18x-2x-9\)

\(=2x\left(2x+9\right)-\left(2x+9\right)\)

\(=\left(2x-1\right)\left(2x+9\right)\)

Câu 2:

\(6x^2-11x+3=0\)

\(\Leftrightarrow6x^2-2x-9x+3=0\)

\(\Leftrightarrow2x\left(3x-1\right)-3\left(3x-1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

10 tháng 11 2023

a: \(P=-3x^3+5x\)

\(=x\cdot\left(-3x^2\right)+x\cdot5\)

\(=x\left(-3x^2+5\right)\)

b: \(Q=\left(2x-1\right)+\left(x-2\right)\left(2x-1\right)\)

\(=\left(2x-1\right)\left(1+x-2\right)\)

\(=\left(2x-1\right)\left(x-1\right)\)

c: \(R=4-16x^2\)

\(=4\cdot1-4\cdot4x^2\)

\(=4\left(1-4x^2\right)\)

\(=4\left(1-2x\right)\left(1+2x\right)\)

d: \(S=36-4x^2\)

\(=4\cdot9-4\cdot x^2\)

\(=4\left(9-x^2\right)\)

\(=4\left(3-x\right)\left(3+x\right)\)

e: \(T=8x^3-1\)

\(=\left(2x\right)^3-1^3\)

\(=\left(2x-1\right)\left(4x^2+2x+1\right)\)

f: \(Q=8-x^3\)

\(=2^3-x^3\)

\(=\left(2-x\right)\left(4+2x+x^2\right)\)

g: \(N=64-x^3\)

\(=4^3-x^3\)

\(=\left(4-x\right)\left(16+4x+x^2\right)\)