(x-2y).(y-2x)+(x+2y).(y+2x)
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)
\(\Leftrightarrow x^2y^2-x^2+2y^2-2=0\)
\(\Leftrightarrow x^2\left(y^2-1\right)+2\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(y^2-1\right)\left(x^2+2\right)=0\)
Dễ thấy: \(x^2\ge0\forall x\Leftrightarrow x^2+2\ge2>0\) (Vô nghiệm)
\(\Leftrightarrow x\) tùy ý
\(\Leftrightarrow y^2-1=0\Leftrightarrow\) \(\left[{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\)
Vậy \(x\) tùy ý và \(y=1\) hoặc \(y=-1\)
a)
x | 1 | -1 | 12 | -12 | 2 | -2 | 6 | -6 | 3 | -3 | 4 | -4 |
y-3 | -12 | 12 | -1 | 1 | -6 | 6 | -2 | 2 | -4 | 4 | -3 | 3 |
y | -9 | 15 | 2 | 4 | -3 | 9 | 1 | 5 | -1 | 7 | 0 | 6 |
b)
x | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
y | -21 | 21 | -7 | 7 | -3 | 3 | -1 | 1 |
c)
2x-1 | 1 | -1 | 5 | -5 | 7 | -7 | 35 | -35 |
2y+1 | -35 | 35 | -7 | 7 | -5 | 5 | -1 | 1 |
x | 1 | 0 | 3 | -2 | 4 | -3 | 18 | -17 |
y | -18 | 17 | -4 | 3 | -3 | 2 | -1 | 0 |
e)
2x+1 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
3y-2 | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
x | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
y | loại | 19 | -3 | loại | -1 | loại | loại | 1 |
Những câu còn lại mk hổng bt làm đâu
Đặt \(\hept{\begin{cases}\frac{1}{x^2}=a\\\frac{1}{y^2}=b\\\frac{1}{z^2}=c\end{cases}}\Rightarrow abc=1\) và ta cần chứng minh
\(\frac{1}{2a+b+3}+\frac{1}{2b+c+3}+\frac{1}{2c+a+3}\le\frac{1}{2}\left(1\right)\)
Áp dụng BĐT AM-GM ta có:
\(2a+b+3=\left(a+b\right)+\left(a+1\right)+2\ge2\left(\sqrt{ab}+\sqrt{a}+2\right)\)
\(\Rightarrow\frac{1}{2a+b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{a}+1\right)}=\frac{1}{2}\cdot\frac{1}{\sqrt{ab}+\sqrt{a}+1}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{2b+c+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{bc}+\sqrt{b}+1};\frac{1}{2c+a+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{ac}+\sqrt{c}+1}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT_{\left(1\right)}\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{a}+1}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{c}+\sqrt{ac}+1}\right)\le\frac{1}{2}=VP_{\left(2\right)}\left(abc=1\right)\)
Ta có: \(5x^2-4xy+2x-2y+y^2+2=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4x-2y\right)+1+\left(x^2-2x+1\right)==0\)
\(\Leftrightarrow\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+\left(x-1\right)^2=0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-y+1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
\(Pt\left(1\right)\Leftrightarrow2x\left(x-y\right)+x-y=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-y\right)=0\)
Ta có: \(\left(2y+2x+1\right)\left(2y-2x-1\right)=51\)
<=> \(4y^2-\left(2x+1\right)^2=51\)
<=> \(4y^2-\left(2x+1\right)^2=100-49\)
=> \(\hept{\begin{cases}4y^2=100\\\left(2x+1\right)^2=49\end{cases}}\) => \(\hept{\begin{cases}2y=\pm10\\2x+1=\pm7\end{cases}}\)
Đến đây bn tự giải tiếp nhé
\(\left(x^2-6x\right)^2-2\left(x-3\right)^2-81=\left[\left(x^2-6x\right)^2-81\right]-2\left(x-3\right)^2=\left[\left(x^2-6x\right)^2-9^2\right]-2\left(x-3\right)^2=\left(x^2-6x+9\right)\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x+11\right)\)
Lời giải:
Xét biểu thức B:
\(B=x^2+2y^2-2x+2y+2xy+15\)
\(B=(x^2+y^2+1+2xy-2x-2y)+(y^2+4y+4)+10\)
\(B=(x+y-1)^2+(y+2)^2+10\)
Thấy rằng \(\left\{\begin{matrix} (x+y-1)^2\geq 0\\ (y+2)^2\geq 0\end{matrix}\right.\forall x,y\in\mathbb{R}\)
\(\Rightarrow B\geq 10\)
Vậy \(B_{\min}=10\Leftrightarrow \left\{\begin{matrix} x+y-1=0\\ y+2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3\\ y=-2\end{matrix}\right.\)
-----------------------------------
Xét biểu thức C
\(C=x^2+y^2+y+x+y\)
\(C=x^2+y^2+2y+x\)
\(C=(x^2+x+\frac{1}{4})+(y^2+2y+1)-\frac{5}{4}\)
\(C=(x+\frac{1}{2})^2+(y+1)^2-\frac{5}{4}\)
Ta thấy \(\left\{\begin{matrix} (x+\frac{1}{2})^2\geq 0\\ (y+1)^2\geq 0\end{matrix}\right.\forall x,y\in\mathbb{R}\)
\(\Rightarrow C\geq -\frac{5}{4}\) hay \(C_{\min}=\frac{-5}{4}\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x+\frac{1}{2}=0\\ y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-1}{2}\\ y=-1\end{matrix}\right.\)
-----------------------------------
Xét biểu thức D
\(D=x^2-2x+y^2-4y+7\)
\(D=(x^2-2x+1)+(y^2-4y+4)+2\)
\(D=(x-1)^2+(y-2)^2+2\)
Thấy rằng \(\left\{\begin{matrix} (x-1)^2\geq 0\\ (y-2)^2\geq 0\end{matrix}\right.\forall x,y\in\mathbb{R}\)
\(\Rightarrow D\geq 2\Leftrightarrow D_{\min}=2\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-1=0\\ y-2=0\end{matrix}\right.\Leftrightarrow x=1; y=2\)
\(C=x^2+y^2+y+x+y\\ =x^2+y^2+2y+x\\ \left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(y^2+2y+1\right)-\dfrac{5}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\left(y+1\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\)
Dấu "=" xảy ra khi x=-1/2;y=-1
Đáp án
10𝑥𝑦
thanks TÔ TUẤN PHONG