K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

Đáp án

10𝑥𝑦

27 tháng 6 2021

thanks TÔ TUẤN PHONG 

5 tháng 5 2017

Giải:

Ta có:

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

\(\Leftrightarrow x^2y^2-x^2+2y^2-2=0\)

\(\Leftrightarrow x^2\left(y^2-1\right)+2\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(y^2-1\right)\left(x^2+2\right)=0\)

Dễ thấy: \(x^2\ge0\forall x\Leftrightarrow x^2+2\ge2>0\) (Vô nghiệm)

\(\Leftrightarrow x\) tùy ý

\(\Leftrightarrow y^2-1=0\Leftrightarrow\) \(\left[{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\)

Vậy \(x\) tùy ý và \(y=1\) hoặc \(y=-1\)

8 tháng 12 2024

a) 

x 1 -1 12 -12 2 -2 6 -6 3 -3 4 -4
y-3 -12 12 -1 1 -6 6 -2 2 -4 4 -3 3
y -9 15 2 4 -3 9 1 5 -1 7 0 6

b)

x 1 -1 3 -3 7 -7 21 -21
y -21 21 -7 7 -3 3 -1 1

c)

2x-1 1 -1 5 -5 7 -7 35 -35
2y+1 -35 35 -7 7 -5 5 -1 1
x 1 0 3 -2 4 -3 18 -17
y -18 17 -4 3 -3 2 -1 0

e)

2x+1 1 -1 5 -5 11 -11 55 -55
3y-2 -55 55 -11 11 -5 5 -1 1
x 0 -1 2 -3 5 -6 27 -28
y loại 19 -3 loại -1 loại loại 1

Những câu còn lại mk hổng bt làm đâu

26 tháng 7 2016

x= 75 ; y = 50 ; z = 30

2 tháng 4 2017

Đặt \(\hept{\begin{cases}\frac{1}{x^2}=a\\\frac{1}{y^2}=b\\\frac{1}{z^2}=c\end{cases}}\Rightarrow abc=1\) và ta cần chứng minh 

\(\frac{1}{2a+b+3}+\frac{1}{2b+c+3}+\frac{1}{2c+a+3}\le\frac{1}{2}\left(1\right)\)

Áp dụng BĐT AM-GM ta có: 

\(2a+b+3=\left(a+b\right)+\left(a+1\right)+2\ge2\left(\sqrt{ab}+\sqrt{a}+2\right)\)

\(\Rightarrow\frac{1}{2a+b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{a}+1\right)}=\frac{1}{2}\cdot\frac{1}{\sqrt{ab}+\sqrt{a}+1}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{2b+c+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{bc}+\sqrt{b}+1};\frac{1}{2c+a+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{ac}+\sqrt{c}+1}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT_{\left(1\right)}\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{a}+1}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{c}+\sqrt{ac}+1}\right)\le\frac{1}{2}=VP_{\left(2\right)}\left(abc=1\right)\)

23 tháng 4 2017

t nghĩ ôg có chút nhầm lẫn , phải là sigma (1/2b+a+3) </ 1/2 

30 tháng 9 2020

Ta có: \(5x^2-4xy+2x-2y+y^2+2=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4x-2y\right)+1+\left(x^2-2x+1\right)==0\)

\(\Leftrightarrow\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x-y+1\right)^2+\left(x-1\right)^2=0\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-y+1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

30 tháng 9 2020

y sai rùi bn

31 tháng 3 2019

\(Pt\left(1\right)\Leftrightarrow2x\left(x-y\right)+x-y=0\)

            \(\Leftrightarrow\left(2x+1\right)\left(x-y\right)=0\)

Ta có: \(\left(2y+2x+1\right)\left(2y-2x-1\right)=51\) 

<=> \(4y^2-\left(2x+1\right)^2=51\) 

<=> \(4y^2-\left(2x+1\right)^2=100-49\) 

=> \(\hept{\begin{cases}4y^2=100\\\left(2x+1\right)^2=49\end{cases}}\) => \(\hept{\begin{cases}2y=\pm10\\2x+1=\pm7\end{cases}}\) 

Đến đây bn tự giải tiếp nhé

21 tháng 6 2019

\(\left(x^2-6x\right)^2-2\left(x-3\right)^2-81=\left[\left(x^2-6x\right)^2-81\right]-2\left(x-3\right)^2=\left[\left(x^2-6x\right)^2-9^2\right]-2\left(x-3\right)^2=\left(x^2-6x+9\right)\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x+11\right)\)

21 tháng 6 2019

=\(\left(x-3\right)^2\left(x^2-6x-11\right)\)

nha

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

Xét biểu thức B:

\(B=x^2+2y^2-2x+2y+2xy+15\)

\(B=(x^2+y^2+1+2xy-2x-2y)+(y^2+4y+4)+10\)

\(B=(x+y-1)^2+(y+2)^2+10\)

Thấy rằng \(\left\{\begin{matrix} (x+y-1)^2\geq 0\\ (y+2)^2\geq 0\end{matrix}\right.\forall x,y\in\mathbb{R}\)

\(\Rightarrow B\geq 10\)

Vậy \(B_{\min}=10\Leftrightarrow \left\{\begin{matrix} x+y-1=0\\ y+2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3\\ y=-2\end{matrix}\right.\)

-----------------------------------

Xét biểu thức C

\(C=x^2+y^2+y+x+y\)

\(C=x^2+y^2+2y+x\)

\(C=(x^2+x+\frac{1}{4})+(y^2+2y+1)-\frac{5}{4}\)

\(C=(x+\frac{1}{2})^2+(y+1)^2-\frac{5}{4}\)

Ta thấy \(\left\{\begin{matrix} (x+\frac{1}{2})^2\geq 0\\ (y+1)^2\geq 0\end{matrix}\right.\forall x,y\in\mathbb{R}\)

\(\Rightarrow C\geq -\frac{5}{4}\) hay \(C_{\min}=\frac{-5}{4}\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x+\frac{1}{2}=0\\ y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-1}{2}\\ y=-1\end{matrix}\right.\)

-----------------------------------

Xét biểu thức D

\(D=x^2-2x+y^2-4y+7\)

\(D=(x^2-2x+1)+(y^2-4y+4)+2\)

\(D=(x-1)^2+(y-2)^2+2\)

Thấy rằng \(\left\{\begin{matrix} (x-1)^2\geq 0\\ (y-2)^2\geq 0\end{matrix}\right.\forall x,y\in\mathbb{R}\)

\(\Rightarrow D\geq 2\Leftrightarrow D_{\min}=2\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-1=0\\ y-2=0\end{matrix}\right.\Leftrightarrow x=1; y=2\)

29 tháng 12 2017

\(C=x^2+y^2+y+x+y\\ =x^2+y^2+2y+x\\ \left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(y^2+2y+1\right)-\dfrac{5}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\left(y+1\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\)

Dấu "=" xảy ra khi x=-1/2;y=-1