tìm a và b thuộc z và \(a^2+b^2\)chia hết cho ab
tính A=\(\frac{a^2+b^2}{ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Giả sử $a,b$ đều không chia hết cho 3.
Ta biết 1 scp khi chia 3 dư 0 hoặc 1. Mà $a,b$ không chia hết cho 3 nên $a^2, b^2$ chia 3 đều dư 1.
$\Rightarrow c^2=a^2+b^2$ chia 3 dư 2 (vô lý vì $c^2$ là scp mà scp khi chia 3 chỉ dư 0 hoặc 1)
Do đó điều giả sử là sai. Tức là trong 2 số $a,b$ có ít nhất 1 số chia hết cho 3.
b.
Vì trong 2 số $a,b$ có ít nhất 1 số chia hết cho 3 nên $ab\vdots 3$ (1)
Lại có:
Nếu $a,b$ đều lẻ thì $a^2\equiv 1\pmod 4, b^2\equiv 1\pmod 4$
$\Rightarrow c^2=a^2+b^2\equiv 2\pmod 4$ (vô lý vì scp khi chia 4 chỉ dư 0 hoặc 1)
Nếu $a,b$ có 1 số chẵn, 1 số lẻ. Không mất tổng quát giả sử $a$ chẵn, $b$ lẻ.
$\Rightarrow a^2+b^2=c^2$ lẻ nên $c$ lẻ.
Ta có: $a^2=c^2-b^2$
Mà $c^2, b^2$ là scp lẻ nên $c^2\equiv 1\pmod 8; b^2\equiv 1\pmod 8$
$\Rightarrow a^2\equiv 1-1\equiv 0\pmod 8$
$\Rightarrow a\vdots 4$
$\Rightarrow ab\vdots 4$
Nếu $a$ chẵn, $b$ chẵn thì hiển nhiên $ab\vdots 4$
Vậy tóm lại $ab\vdots 4$ (2)
Từ (1); (2) $\Rightarrow ab\vdots 12$
Ta có đpcm.
a/ Đặt A=6n2+n-7
=> 3A= 3(6n2-4n+5n-7)=3(6n2-4n)+15n-21 = 6n(3n-2)+15n-10-11=6n(3n-2)+5(3n-2)-11=(3n-2)(6n+5)-11
Nhận thấy: (3n-2)(6n+5) chia hết cho 3n-2 với mọi n
=> Để A nguyên (hay 3A nguyên) thì 11 phải chia hết cho 3n-2 => 3n-2=(-11,-1,1,11)
3n-2 | -11 | -1 | 1 | 11 |
n | -3 | 1/3(loại) | 1 | 13/3(loại) |
3A | -44 | Loại | 0 | Loại |
A | -44/3(loại) | Loại | 0 | Loại |
Đáp số: n=1
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
Vì a2+b2 chia hết cho ab
mà ab chia hết cho a
=>a2+b2 chia hết cho a
mà a2 chia hết cho a
=>b2 chia hết cho a
=>b chia hết cho a(1)
Tương tự: Vì a2+b2 chia hết cho ab
mà ab chia hết cho b
=>a2+b2 chia hết cho b
mà b2 chia hết cho b
=>a2 chia hết cho b
=>a chia hết cho b(2)
Từ (1) và (2) ta thấy:
a chia hết cho b, b chia hết cho a
=>a=b
=>\(A=\frac{a^2+b^2}{ab}=\frac{a^2+a^2}{a.a}=\frac{2.a^2}{a^2}=\frac{2}{1}=2\)
Vậy A=2